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  Abstract
Statistical models of the distribution and abundance of 72 species of rocky reef fishes were 
developed using boosted regression trees and a set of environmental, geographic and dive-
specific variables. The models were used to predict and map the occurrence and relative 
abundance of the selected species on shallow coastal reefs around New Zealand, including the 
remote Kermadec and Chatham Islands, at the scale of a 1-km2 grid. A cross-validation method 
indicated that the models were able to explain between 8% (Notoclinops caerulepunctus) and 
86% (Chromis dispulis) of the deviance in species abundances, with a mean of 43%. The most 
widespread species were predicted to be from the family Tripterygiidae, such as Forsterygion 
flavonigrum, F. malcolmi, and F. varium (predicted at 99%, 99%, and 93% of predicted reef 
sites, respectively), and also Caesioperca lepidoptera (95%) of Serranidae and Notolabrus 
fucicola (91%) of Labridae. The models provided here are a valuable source of information for 
both fish ecologists and managers. The models identify the environmental variables that are 
ecologically important for these species, and provide insight into the nature of broad-scale 
relationships between reef fishes and their environment. In particular, a minimum wintertime 
sea-surface temperature threshold was suggested for many northern species. Moreover, while 
the biogeography of New Zealand reef fishes has previously been described by reference to 
regional spatial scales, this is the first known prediction of the distribution of reef fishes for such 
a broad geographic extent and fine spatial resolution. The predictions from these models thus 
provide important, spatially-explicit data for use in the management of coastal biodiversity, 
particularly in the area of marine spatial planning and the identification of high priority areas for 
conservation.

Keywords:  biogeography, boosted regression trees, species distribution modelling, rocky reef, 
reef fish, relative abundance
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 1. Introduction

The New Zealand Biodiversity Strategy (DOC & MfE 2000) aims to protect a full range of natural 
marine habitats and ecosystems in order to effectively conserve New Zealand’s indigenous 
marine biodiversity.  This includes the implementation of a representative network of Marine 
Protected Areas (MPAs) (DOC & MfE  2000). In order to achieve this aim, central and local 
government agencies with management responsibility for marine ecosystems, and local 
communities require detailed information on the spatial distribution of marine resources, and 
biodiversity values of specific areas and habitat types.    

Shallow, coastal rocky reefs are focal points for customary, recreational and commercial use, 
as well as scientific research.  It is unsurprising therefore that the majority of marine reserves 
located around mainland New Zealand are centred upon, or contain, both intertidal and shallow 
subtidal reef systems (Enderby & Enderby 2006). Fishes form a prominent and taxonomically 
and ecologically diverse component of these systems (Russell 1983; Paulin & Roberts 1992, 
1993; Francis 1996; Clements & Zemke-White 2008). To date, research on distributional patterns 
of New Zealand reef fishes has been focused at the bioregional scale (Paulin & Roberts 1992, 
1993; Francis 1996). Effective marine spatial planning, including development of representative 
MPA networks, requires information with much finer spatial resolution than this but, as yet, no 
nationally consistent data sets suitable for this purpose have been published for any New Zealand 
reef organisms.

Unfortunately, it is often prohibitively costly and time-consuming to conduct biological surveys 
with sufficient fine scale spatial resolution and broad enough geographic coverage for use in 
systematic marine spatial planning. However, the relationships between species distributions 
and environmental variables can be determined using statistical models, allowing predictions 
to be made for areas where observational data are lacking. A variety of modelling techniques are 
available for this purpose, including an ensemble approach known as  Boosted Regression Trees 
(BRTs, Friedman 2001; Hastie et al. 2001; Elith et al. 2008). Leathwick et al. (2006a) recently used 
BRTs to model the distributions of demersal fishes at shelf and upper slope depths throughout 
New Zealand’s Exclusive Economic Zone (EEZ).  

We used BRTs to model the distribution and relative abundance of rocky reef fishes around the 
New Zealand coast line using data obtained from diver surveys, and a suite of environmental, 
geographic and dive-specific predictor variables. The primary objective of this work was to 
provide fine-scale, nationally consistent data layers that could be used in conjunction with 
Geographic Information Systems (GIS) and spatial planning tools to inform the management of 
coastal areas, specifically the identification of priority areas for the conservation and protection 
of reef fish biodiversity (Leathwick et al. 2008a, b). 
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 2. Methods

 2.1 Datasets
 2.1.1 Diver survey of the abundance of reef fishes

Data on the relative abundance of reef fishes were obtained from 467 SCUBA dives made around 
the coast of New Zealand over an 18 year period from November 1986 to December 2004. The 
majority of the data used in this study were collected by C. Duffy, with a small number collected 
by A. Smith. The median length of dive was 46 minutes, and the median maximum depth was 
17 m. The locations of the sites are shown in Fig. 1.

At each site, a thorough search for all species of fish was undertaken. The relative abundance 
of each species of fish observed was recorded on a scale of 0 to 4 (Table 1). This scale broadly 
represents orders of magnitude of abundance, and is similar to the so-called ‘Roving Diver 
Technique’ used by Schmitt & Sullivan (1996), Schmitt et al. (2002) and Semmens et al. (2004). 

The original dataset contained 212 species. Pelagic, highly cryptic or primarily soft sediment 
species were excluded from the analysis. With the exception of Anampses elegans, Aplodactylus 
etheridgii, Epinephelus daemelii, Odax cyanoallix, Trachypoma macracanthus and Zanclistius 
elevates, species that were too rare to be effectively modelled (i.e. recorded from less than  
20 sites) were also excluded from the analysis. Those rare species that were modelled were 
included at the request of the Department of Conservation (DOC). The final dataset contained  
72 species (Table 2; Appendix 1).

 2.1.2 Predictor variables
Fifteen variables were available to the models, each falling into one of three categories: 
environmental, geographic and dive-specific (Table 3). Some predictor variables were log-
transformed to enable easier visualisation of the results (Table 3). Monotonic transformations 
have no effect on BRT models or their predictions (Friedman & Meulman 2003).

  Environmental predictors

Environmental variables were obtained as GIS raster layers. Most were developed as part of 
the New Zealand Marine Environment Classification (MEC) (Snelder et al. 2004; Snelder et al. 
2007). The MEC variable layers of bathymetry, freshwater fraction and orbital velocity were not 
used because they were considered too inaccurate in shallow (Leathwick, et al. 2004; Snelder 
et al. 2005; Smith 2006). The latter predicts the velocity of water at the sea bed as induced by 
swell waves but did not take into account sheltering or refraction by land (Smith 2006). Instead, 
average fetch, a geographically derived proxy, was used for wave exposure (see below).

  Geographic predictors

The two geographic variables used were the shortest distance to land and average fetch. The 
shortest distance to land was calculated using ArcGIS 9.2 and was used as a proxy to represent the 
complex influence the land has on processes such as sedimentation, primary productivity and larval 
dispersal. Average fetch is essentially the average distance to land in all directions, and was used 
here as a surrogate for wave exposure. It was calculated using the method developed by E. Villouta 
and R. Pickard (described by Fletcher et al. 2005), where the distance to land was measured along 
36 radial lines radiating from a point at 10 degrees intervals. Where land was not encountered the 
lines were cropped at 10 km. Where Fletcher et al. (2005) used the sum of the distances in each 
direction, we instead used the average distance. This modified index is equivalent, but we consider 
it more easily interpreted as the average distance to land. This approach to approximating wave 
exposure has been extended and validated by Burrows et al. (2008).
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Figure 1. Locations of 467 dive survey sites. The top right and lower right insets show the Kermadec Islands and Marlborough Sounds, respectively. 
There were no sampling sites at any of the other island groups that are not shown here, including the Chatham Islands.
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Dive-specific predictors

The level of effort and depths of survey dives were not 
standardised, creating a potential source of bias in the 
abundance estimates. To control for this, some dive-specific 
variables were included as predictors in the models and given 
fixed values for the predictions. These variables were the dive 
duration, visibility and the minimum and maximum depths 
surveyed. 

The response functions fitted to these variables were forced to 
be monotonically positive for duration, visibility and maximum 
depth, and monotonically negative for minimum depth. The 
assumptions being that poor visibility decreases observed 
abundance, and that terminating a survey dive some distance 
below the surface should not increase the observed abundance 

of a species but may decrease the probability of observing species confined to very shallow water. 
Allowing these functions to fluctuate freely may allow the model to falsely attribute noise to 
these dive-specific variables, or falsely attribute variation to them that may be better explained by 
other variables.

VALUE NAME NUMBER OF FISH 

OBSERVED

0 Absent 0

1 Single 1

2 Few 2–10

3 Many 11–100

4 Abundant > 100

Table 1.   Ordinal scale of relative abundance 
of f ish recorded at the 467 dive survey sites 
which comprised the biological data used in 
this study. This scale broadly corresponds to a 
y’  = ln(y + 1)  t ransformat ion of  the number of 
indiv iduals of  that species seen per dive.

Table 2.    Detai ls  and performance of  the boosted regression tree models for  each species.  The 
number of  predictor var iables and trees re late to the complexity of  the models.  The deviance 
explained is the proport ion of  the total  deviance in the abundance of  each species that was 
explained by the model ,  as evaluated by cross-val idat ion.  The proport ion of  the predict ive reef 
s i tes at  which the species was predicted ( i .e.  non-zero re lat ive abundance) is  an index of  the 
degree to which the species is widespread.

SPECIES 

 

NUMBER OF 

PREDICTOR 

VARIABLES

NUMBER OF 

TREES FITTED 

DEVIANCE 

EXPLAINED (%) 

PROPORTION OF 

PREDICTIVE SITES 

OCCUPIED (%)

Aldrichetta forsteri 8 820 15 8.2

Amphichaetodon howensis 3 905 58 0.9

Anampses elegans 2 9110 78 0.8

Aplodactylus arctidens 8 1825 24 74.1

Aplodactylus etheridgii 2 5165 79 1.4

Atypichthys latus 4 2845 46 1.6

Bodianus unimaculatus 5 2045 77 19.8

Caesioperca lepidoptera 11 6205 46 95.2

Canthigaster callisterna 3 1295 44 0.8

Caprodon longimanus 3 1965 72 6.8

Centroberyx affinis 4 5870 41 9.4

Cheilodactylus spectabilis 8 2310 44 65.5

Chironemus marmoratus 7 990 26 20.7

Chromis dispilus 5 2495 86 21.9

Conger verreauxi 10 1035 8 35.1

Coris sandageri 2 1545 75 6.3

Decapterus koheru 5 1215 39 11.5

Epinephelus daemelii 2 4505 69 0.6

Forsterygion flavonigrum 9 2585 43 99.0

Forsterygion lapillum 6 1835 51 45.7

Forsterygion malcolmi 6 2170 39 98.5

Forsterygion varium 12 1440 38 93.2

Girella cyanea 2 2705 44 1.2

Girella tricuspidata 6 1080 21 24.7

Grahamina gymnota 8 835 11 19.1

Continued on next page
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SPECIES 

 

NUMBER OF 

PREDICTOR 

VARIABLES

NUMBER OF 

TREES FITTED 

DEVIANCE 

EXPLAINED (%) 

PROPORTION OF 

PREDICTIVE SITES 

OCCUPIED (%)

Gymnothorax prasinus 4 945 34 10.9

Helicolenus percoides 8 2640 41 63.6

Hypoplectrodes huntii 9 2330 31 88.2

Hypoplectrodes sp.B 3 1720 67 10.2

Karalepis stewarti 10 1090 16 20.0

Kyphosus sydneyanus 6 690 13 12.8

Latridopsis ciliaris 8 1870 38 46.1

Latris lineata 3 1720 47 33.5

Lotella rhacina 10 1160 12 90.0

Mendosoma lineatum 6 2145 30 8.1

Nemadactylus douglasii 5 1550 64 18.6

Nemadactylus macropterus 6 1335 23 55.4

Notoclinops caerulepunctus 8 700 8 72.1

Notoclinops segmentatus 9 1670 30 73.7

Notoclinops yaldwyni 5 1340 40 56.1

Notolabrus celidotus 10 3420 62 72.4

Notolabrus cinctus 5 1390 43 30.7

Notolabrus fucicola 11 4215 48 91.1

Notolabrus inscriptus 4 2945 38 1.9

Obliquichthys maryannae 7 1755 39 70.0

Odax cyanoallix 3 5360 84 0.2

Odax pullus 12 2110 31 72.6

Optivus elongatus 5 1365 31 40.1

Pagrus auratus 5 1605 67 14.5

Parablennius laticlavius 5 1770 60 14.8

Parapercis colias 7 2575 60 84.0

Paratrachichthys trailli 7 1020 14 37.9

Parika scaber 8 3565 41 85.5

Parma alboscapularis 4 1240 62 11.0

Pempheris adspersa 7 2975 63 20.9

Plagiotremus tapeinosoma 2 905 46 4.4

Pseudocaranx dentex 4 745 22 16.8

Pseudolabrus luculentus 2 1245 83 7.2

Pseudolabrus miles 7 2950 50 87.3

Pseudophycis barbata 5 1340 11 52.3

Ruanoho whero 7 1670 32 82.1

Scorpaena cardinalis 2 2260 74 2.7

Scorpaena papillosus 5 1370 36 68.5

Scorpis lineolatus 3 1355 35 53.6

Scorpis violaceus 4 2010 62 15.5

Seriola lalandi 6 990 33 30.0

Suezichthys aylingi 3 1560 47 2.1

Trachurus novaezelandiae 4 840 12 13.9

Trachypoma macracanthus 2 3565 54 0.9

Upeneichthys lineatus 5 2010 45 53.9

Zanclistius elevatus 2 720 13 3.0

Zeus faber 4 675 11 7.5

Table 2 continued
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 2.2 Statistical analysis
 2.2.1 Fitting BRT models

Independent models were used to model the abundance of each of the 72 species of reef fish. 
All statistical analyses were undertaken in R (R Development Core Team 2007) using a package 
named ‘gbm’ (Ridgeway 2006) and code developed by Leathwick et al. (2006a, b). The models 
were built using BRT method. This approach combines many individual regression trees to form 
a single ensemble model. The regression trees are produced iteratively, gradually improving the 
overall fit by giving more weight to those sites that are poorly fitted by the previous trees. More 
complete descriptions of the BRT method can be found in Elith et al. (2008); Friedman (2001); 
Hastie et al. (2001); Ridgeway (2006). The specifications used in this study were to fit five trees at 
a time with a learning rate of 0.002 and a tree depth of 5 (see Leathwick et al. 2006a). A Gaussian 
error distribution was used, as it produced a better overall fit and residual pattern than the 
alternatives. Because the ordinal scale used in this study to quantify the abundance of fish 
(Table 1) is roughly logarithmic, this is analogous to using a log-normal approach to modelling 
abundance, which is common in ecology (Legendre & Legendre 1998).

A stepwise, 10-fold, cross-validation procedure was employed to objectively determine the 
number of trees to be fitted in each model, thus reducing the risk of over-fitting. This approach 
divides the dataset into 10 subsets, each withheld in turn while models are fitted to each group 
of 90% of remaining sites. The holdout deviance is then calculated from the average of the 
prediction errors of the models to the respective withheld subsets. The final number of trees is 
given by that which minimises the holdout deviance. Goodness-of-fit statistics were calculated 

Table 3.    L ist  of  the 15 var iables offered to the models,  the number of  models in which each was chosen (out of 
n  = 72 models,  i .e.  one for each species)  and the average contr ibut ion of  the var iable to the models in which i t 
was used.

TYPE 

 

 

 

NAME 

 

 

 

EXPLANATION 

 

 

 

UNITS 

 

 

 

NUMBER OF 

MODELS IN 

WHICH THE 

VARIABLE WAS 

USED

AVERAGE 

CONTRIBUTION  

 

 

Environmental sstwinta Wintertime sea surface temperature °C 70 33.6

seabedsal Salinity at the sea bed psu 43 18.7

sstanampa Annual amplitude of sea surface temperature °C 32 18.1

logdisorgma, b Log of dissolved organic matter Dimensionless 32 14.9

logtidalspeede Log of tidal speed 31 12.0

logsuspartmata, b Log of suspended particulate matter Approx. g/m3 29 12.2

sstanoma Sea surface temperature anomaly °C 29 18.8

logsstgrada Log of sea surface temperature gradient °C/km 25 11.7

chla2a Concentration of chlorophyll a ppm 22 16.2

Geographic avefetchc Average fetch m 48 12.6

  dcoastd Shortest distance to land m 7 11.8

Dive-specific dmax Maximum depth of dive m 17 12.9

dur Duration of dive min 12 7.6

dmin Mimimum depth of dive m 10 5.9

  vis Visibility of dive m 1 5.1

a Developed for the MEC (Hadfield et al. 2002; Snelder et al. 2004; Snelder et al. 2007)
b Pinkerton & Richardson (2005)
c Produced using a program developed by E. Villouta and R. Pickard (Fletcher et al. 2005)
d Calculated using ArcGIS
e Provided by J. Sturman
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from the cross-validation routine, by taking the mean and standard error of the correlation 
between the observed and predicted values for the holdout sites. See Hastie et al. (2001) for a 
more detailed description of the cross-validation method.

 2.2.2 Grooming models
The models were originally fitted using all available predictor variables. Although the cross-
validation process goes some way to ensure that the models are parsimonious in terms of 
the number of trees fitted to the data, over-fitting can also occur by including more predictor 
variables than are necessary. To ameliorate this risk, the global models (those with all predictor 
variables included) for each species in turn were subjected to a simplification process wherein 
variables were removed from the models, and then the final models were created by refitting 
with the reduced variable set. Although the simplification process was essentially subjective, in 
that it was not done automatically, it was informed by some objective criteria. First, the relative 
contributions of each variable, in terms of deviance explained, was noted. Second, a procedure 
was used whereby the lowest contributing variables were sequentially removed from the model, 
before the model was refitted. The change in deviance explained that resulted from removing a 
variable was then examined. 

 2.2.3 Weighting of sites
The geographic placement of the dive surveys was neither random nor representative.

In fact, their placement was highly skewed, with many more sites occurring in areas where the 
principal collector (C. Duffy)  had done intensive surveys (e.g. the Marlborough Sounds and 
the Poor Knights Islands). To avoid these areas having a disproportionately high influence 
on the models, sites were given a weighting that reflected the prevalence of sites with similar 
environmental characteristics. Sites with environmental characteristics that were poorly 
represented in the samples were weighted higher, and those with environmental characteristics 
that were over-represented were down-weighted. 

To achieve this, a BRT model was used to calculate the probability of a sampling site being 
present in parts of the environmental space into which predictions are made. For input to this 
model, the predictive environmental space of interest was represented by 1000 points that were 
randomly generated from within the predictive domain (produced using Hawth’s Tools for 
ArcGIS; Beyer 2004). Each of the random points was assigned a value of 0 and each sampling site 
was assigned a value of 1, and this variable was used to produce a binary response variable that 
was modelled using the environmental variables. The fitted values were transformed (by the log 
of the inverse, i.e. log(1/x), where x is the fitted value) and used as the weighting in the predictive 
models of the abundances of reef fishes. As we were primarily concerned with the environmental 
representativeness of the sites, only the environmental predictors were used in this model.

The majority of the randomly allocated ‘zero’ points were located immediately adjacent to the 
coast. This was done by selecting them according to a spatially-explicit probability distribution 
that decreased with distance from the coast. Although, for the final models, predictions were 
made beyond coastal areas area in the BRT models, the coast is where the most accuracy is 
required because this is where the majority of sampling sites were located. As a result, the models 
were more strongly weighted towards, and probably more accurate for, coastal areas. 

 2.2.4 Predictions
A geographic area for which predictions were made (the predictive domain) was delineated. 
The latitudinal extent of the predictions was from the Kermadec Islands in the north to Stewart 
Island/Rakiura in the south. Although no surveys were conducted at the Chatham Islands, 
predictions were made for this remote island group. However, these predictions should be treated 
with caution as it is known that some mainland species of reef fish have not been recorded there. 
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The predictive domain was first produced as a 1-km2 grid, in which a pixel was included if it 
satisfied at least one of the following conditions: it was within the 50-m depth contour; within 
1 km from the shore; or within 1 km of a sample site. This grid was then overlain with a shape file 
showing the positions of subtidal reefs inferred from navigational charts, and those grid cells 
that contained no reef were removed. This predictive domain was then converted into a 1-km2 
grid of points. Values for the environmental and geographic variables were extracted for each 
point, and then the BRT models were used to make predictions for each point according to the 
environmental and geographical conditions. 

For the dive-specific variables, fixed values were assigned to the predictive points. For 
duration and visibility, the median values from the surveys were assigned, specifically 46 min 
and 7 m, respectively. With no reliable bathymetric information available (see section 2.1.2— 
Environmental predictors), arbitrary depths had to be assigned to the predictive domain. The 
maximum depth was fixed to 30 m for the entire domain. The minimum depth was fixed to 0 m 
for points adjacent to the coast (i.e. within 1 km) and 10 m for offshore points. 

Eight of the predicted species distributions in preliminary modelling showed presences far 
southwards of their known ranges as given by Francis (2001). These species tended to have a 
very low number of presences in the dataset. This problem was managed by restricting both the 
data that were used to produce the model, and the predictions, to northwards of specific latitudes. 
These species, with their southern latitudinal limits given in parentheses, were Anampses 
elegans (38°S), Atypichthys latus (38°S), Bodianus unimaculatus (40°S), Girella tricuspidata 
(40°S), Nemadactylus douglasii (42°S), Notolabrus inscriptus (39°S), Optivus elongatus (43°S) and 
Trachypoma macracanthus (40°S).

 2.2.5 Scaling the predictions
Two issues with the raw predictions from the models needed to be overcome. Firstly, because a 
Gaussian error distribution was used and the fact that predictions from the BRT method are the 
average taken from many models, the output from these models was on a continuous scale, rather 
than the ordinal one in the input data. Secondly, the results for many species were poorly scaled, 
so that the predictions at the lower end of the scale were overestimated and those at the upper 
end were underestimated. 

To correct these issues, a second step was used to rescale the predictions to match the original 
scale of abundance used in the raw data. This involved fitting a single classification tree (using 
the rpart library in R; see Breiman et al. 1984) to the observed values using the predicted values. 
The predictions from the entire domain were then rescaled using this model and rounded to 
one decimal place. Although the rounding to one decimal place meant that the predictions were 
decimals rather than whole numbers, this method meant that the predicted abundance was 
unbiased and the original scale of relative abundance was preserved. 

 2.3 Uncertainty 
 2.3.1 Bootstrapped confidence intervals

Bootstrapped confidence intervals (Manly 1997) were produced to obtain estimates of certainty 
for each prediction. This was done by refitting the model to each of 500 bootstrap samples of 
the original data and making predictions (including scaling, see section 2.2.5) for each species. 
The 0.025 and 0.975 quantiles were taken for every predicted point to provide 95% confidence 
intervals. These confidence intervals are not presented in this report because of the space 
required but are available upon request. 
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 2.3.2 Coverage of the environmental space by samples
The ‘environmental space’ is the multidimensional space conceived when each environmental 
variable is treated as a dimension. The samples and predictive sites can be projected into this 
space according to their values on each environmental variable. Some parts of this environmental 
space will contain many samples and thus be considered well covered by the biological data. 
However, because of correlations among the variables (i.e. multicollinearity), other parts of 
the environmental space will not be well covered by samples. Furthermore, there may be areas 
in the environmental space for which predictions are made, but which are underrepresented 
by samples. Here, predictions are considered less reliable and should be treated with a higher 
degree of scepticism than predictive sites in areas that are well covered by samples. 

We used a novel approach to quantifying the degree to which the environmental conditions of 
each predictive site was covered by the samples. The approach was similar to that used in the 
weighting of sites (see section 2.2.3). A sample of 50 000 random values was taken from the 
environmental space and assigned a value of 0, indicating that these were ‘false’ sample sites. 
These were combined with the true samples, to which a value of 1 was assigned. A BRT model 
was then used to model this new variable that contained 0s for false (random) samples and 1s for 
true samples, using the Bernoulli error distribution. Predictions using this model then yielded 
estimates of the probability of a site occurring in each part of the environmental space. Five-
hundred trees with an interaction depth of two were used, so that only pair-wise combinations 
of the environmental variables were regarded. Predictions were then made for the predictive 
domain using this model, generating values between 0 and 1, according to how well each 
predictive site was represented by the samples. This may be used as a spatially explicit index 
of the degree of confidence that can be placed at each cell of the predictive domain, given its 
environmental conditions.
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 3. Results

 3.1 Model outputs
The primary output of these models is a set of spatially explicit maps that quantify the estimated 
relative abundance of 72 reef fishes inhabiting shallow coastal waters from Stewart Island/Rakiura 
north. Predictions were initially made for 52 110 gridded locations, but this was reduced to 9605 
when locations that did not contain rocky reef were removed (see section 2.2.4). Presentation of 
the predictions for each of the 72 species in this document was not possible due to restrictions 
on space. However, national-scale maps are provided for all modelled species in Supplement 1, 
and the spatial data underlying these are available on the DOC website associated with this 
publication (see Appendix 2 for details). The predicted abundance of the marblefish (Aplodactylus 
arctidens) is presented and discussed in section 3.3. This species had an interesting predicted 
distribution and illustrates how the broader results may be used and interpreted.

The stepwise routine fitted between 675 and 9110 trees to the models, and took between 
48 seconds and 46 minutes of computation time (median: 1698 trees and 4 min. respectively).  
For each species, the deviance in abundance that was explained by the model was evaluated 
using cross-validated data that were systematically withheld from the modelling process. This is 
a more robust and conservative method of evaluating goodness-of-fit of a model than using the 
same data with which the model was trained (Hastie et al. 2001). As assessed by this method, the 
models were able to explain between 8% (Notoclinops caerulepunctus) and 86% (Chromis dispilis) 
of the deviance in species abundances (Table 2), with a mean of 43%. 

Six species that were present at fewer than 20 sites were included in this study because they 
were of particular conservation interest. Surprisingly, the models for four these species were very 
successful. Models for these four species (Epinephelus daemelii, Aplodactylus etheridgii, Odax 
cyanoallix and Anampses elegans) explained between 69% and 84% of the deviance in abundance, 
while the remaining two of the rare species (Trachypoma macracanthus and Zanclistius elevatus) 
were among the poorest in terms of deviance explained (Table 2). 

The predicted percentage of (rocky reef) sites where a species occurs (i.e. predicted abundance 
was greater than zero) can be used as a measure of the prevalence or ‘widespreadness’ of 
a species (Table 2). By this criterion, the most widespread species were from the families 
Tripterygiidae (Forsterygion flavonigrum, F. malcolmi, F. varium, Ruanoho whero), Serranidae 
(Caesioperca lepidoptera and Hypoplectrodes huntii), Labridae (Notolabrus fucicola 
and Pseudolabrus miles), Monacanthidae (Parika scaber), Moridae (Lotella rhacina), and 
Pinguipedidae (Parapercis colias), all of which were predicted at greater than 80% of sites. Most 
of the rarest species were excluded from the analysis, but the least widespread of those that 
were modelled were O. cyanoallix (endemic to the Three Kings Islands), E. daemelii, Anampses 
elegans, Canthigaster callisterna, Amphichaetodon howensis and T. macracanthus, all of which 
were predicted to occur at less than 1% of sites. The distributions of these species are generally 
restricted to offshore islands in northern New Zealand.

 3.2 Influence of the predictor variables
A set of partial dependence plots is provided for all modelled species in Supplement 2. These 
plots show the marginal effect of each predictor variable on the abundance of the species, after 
accounting for all the other predictor variables in the model (Elith et al. 2008). Although the 
partial dependence plots contain a great deal of information about the environmental conditions 
in which each species is found, there are too many species to discuss them in detail here. 
However, the overall patterns and importance of the variables across all models are discussed 
below.
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The number of variables selected in the 72 species models ranged from 2 to 12, with a median 
across species of 5 variables (Table 2). The overall importance of each predictor variable can be 
quantified by the number of species models in which it was chosen and its average contribution 
to those models (Table 3). The most consistently important variable for predicting the abundance 
of species was wintertime sea surface temperature (sstwint), which was selected in 70 (of 72) 
species models. It was dominant in 30 of these models, with an average of 33% contribution in 
those models in which it was selected (Table 3). 

One very consistent pattern noted in the partial dependence plots (see Supplement 2) is that the 
shape of the response to sstwint forms a threshold for many northern species. Below the threshold 
the response is near zero or negative and above it is positive. These thresholds are likely to 
represent the minimum temperature requirements for the species. For example, Chromis dispilus 
appears to prefer temperatures above 14°C (Fig. 2). There were only two species—Forsterygion 
lapillum and Trachurus novaezelandiae—for which sstwint was not selected. The next most 
important variables were average fetch and salinity at the seabed (Table 3). 

The four dive-specific variables were seldom included in the models, mostly due to their poor 
predictive power. However, maximum depth of dive was the best predictor for Caesioperca 
lepidoptera and Forsterygion flavonigrum. This is consistent with these species’ preference for 
deeper reef habitats (Francis 2001).

 3.3 Results for Aplodactylus arctidens
The results for Aplodactylus arctidens (marblefish) are presented in more detail to serve as an 
example of how to interpret the results for the 72 species. The deviance explained by the model  
(a measure of the overall success of the model at explaining variation in abundance) was 24% 
(Table 2). This is much lower than the mean of 43% across species, which suggests that the 
abundance of A. arctidens is less related to the predictor variables than most other species 
modelled here, and thus less confidence can be placed in the predictions for this species. 

The predicted distribution of A. arctidens spans a wide area from Manawatawhi/Three Kings 
Islands in the north to Stewart Island/Rakiura in the south and the Chatham Islands in the east 
(Fig. 3). This is consistent with the known range of this species (Francis 2001). The highest 
abundance predicted on the ordinal scale was 2, corresponding to up to 10 individuals seen 
per dive. This species is predicted to occur at relatively high abundance on several stretches of 
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Figure 2.   A partial dependence plot of the effect of wintertime sea surface temperature on 
the abundance of Chromis dispilus (two-spot demoiselle). This is shown as an example of a 
temperature threshold that drove the predictions for many northern species. It appears that  
C. dispilus is rarely found in water colder than 14°C.
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Figure 3.   The predicted abundance of Aplodactylus arctidens (marblefish) on rocky reefs around New Zealand. Abundance 
was measured on an ordinal scale according to how many individuals were seen on a dive, shown on Table 1. The predicted 
values were rounded to one decimal place and can be interpreted on the original scale. For example, a predicted abundance 
of 0.6 means that the expected score on the original scale is between 0 (absent) and 1 (one individual), so that on average 
a single individual is seen roughly 60% of the time. Likewise, a predicted abundance of 1.5 means that one would expect a 
score of between 1 (one individual) and 2 (2–10 individuals) at that site, each occurring roughly 50% of the time. The top right 
and lower right inserts show the Kermadec and Chatham Islands, respectively.
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Figure 4.   Partial dependence plots showing the relationships between the predictor variables and the abundance of Aplodactylus arctidens 
(marblefish) as observed by scuba on rocky reefs and modelled by a boosted regression tree ensemble model. Each plot represents one predictor 
variable as indicated on the x-axis label. The percentage values in parentheses indicate the relative contribution of the variable to the model. The 
shape of the function on the graphs shows the overall effect of the variable on the abundance of A. arctidens, shown on a relative scale. The x-axis 
represents the range of the predictor variable, and the y-axis (the ‘fitted function’) corresponds to the influence of the variable. A positive value on 
the y-axis at a given value on the x-axis indicates a positive effect on abundance of this value of the predictor variable, and the converse is true for 
negative values on the y-axis. For example, the abundance of as A. arctidens generally increases with increasing values of avefetch (an index of 
exposure). See Elith et al. (2008) for more details.

coastline, particularly along the west and northeast coasts of the South Island and the southern 
part of the North Island. North of Taranaki and Hawke Bay, its predicted abundance is more 
variable, being predicted to occur in very few areas of the Bay of Plenty and Hauraki Gulf, but 
becoming more abundant in the far north and at the Three Kings Islands. 

The effect of each predictor variable on the predicted abundance of A. arctidens is shown in 
Fig. 4. The most important variable in the model for this species was average fetch (avefetch), 
with a contribution of 18% relative to the other variables (see Elith et al. 2008). As avefetch is an 
index of exposure, the corresponding graph in Fig. 4 indicates a positive relationship between 
exposure and the abundance of A. arctidens. This is reflected in Fig. 3, with the species predicted 
to be absent from most sheltered reefs, such as those in the Marlborough Sounds, Hauraki Gulf 
and inner Fiordland. Almost as important as avefetch was wintertime sea surface temperature 
(sstwint), with the plot suggesting a preference for areas of between 10° and 14°C (particularly 
12°C). This species showed negative associations with sea surface temperature anomaly 
(sstanom) and sea surface gradient (logsstgrad), and less-clear relationships with dissolved 
organic matter (logdisorgm), tidal speed (logtidalspeed) and suspended particulate matter 
(logsuspartmat). The strongly decreasing function associated with the minimum depth of the 
dive (dmin) indicates that this species was mostly seen on dives that included reef in less than 
10 m of water (i.e. dmin < 10 m). This is consistent with observations that this herbivorous species 
usually occupies and forages in reef habitats shallower than 15 m depth (Russell 1983; Francis 
2001; Clements & Zemke-White 2008).
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 3.4 Geographic variation in the reliability of predictions
The modelling of the coverage of the environmental space by the samples produced a spatially 
explicit layer indicating the areas where predictions extrapolated beyond the environmental 
characteristics of the input data (Fig. 5). Poorly covered areas included the inner Hauraki Gulf, 
the east and south coasts of the South Island, most of Stewart Island/Rakiura (with the exception 
of Paterson Inlet/Whaka a Te Wera) and the Chatham Islands. Areas where coverage was good 
included the rest of northeastern North Island, East Cape, Taranaki, southern North Island, the 
outer Marlborough Sounds and Fiordland.

The relative importance of each variable in this model indicates which variables have significant 
parts of their range that are not well represented by samples. Chlorophyll a (chla2) was the most 
important variable in the model for distinguishing between sampled and non-sampled parts of 
the environmental space (Fig. 6). This suggests that some part of the range of this variable  
(as found in the predictive domain) is poorly represented in the samples. The partial dependence 
plots in Fig. 6 show how well the specific parts of the range of each variable are represented in 
the samples. In the case of chla2, the positive values of the fitted function between zero and one 
indicate that a high proportion of the samples have values of chla2 in this range. The negative 
values greater than two indicate that while these values exist in the predictive domain this part 
of the range of chla2 is relatively poorly sampled. For other variables, samples appear to be well 
represented in areas with high gradients of logsstgrad, moderate levels of sstwint, logtidalspeed, 
logsuspartmat, logdisorgm, salinity at the seabed (seabedsal), sstanom, annual amplitude of sea 
surface temperature (sstanamp), and avefetch.
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Figure 5.   Map of the predictive domain showing how well the environmental conditions of each pixel were represented by 
the survey sites (see section 2.3.1). The top left and lower right insets show the Kermadec and Chatham Islands, respectively. 
This measure of environmental coverage provides an index of how much confidence can be placed in the predictions, and 
is based on the probability of a sample site occurring at each location given the environmental conditions there. It takes 
potential values between zero (i.e. no samples in the dataset with those environmental conditions) and one (i.e. many samples 
with those environmental conditions). 
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Figure 6.   A set of partial dependence plots showing the contributions and fitted functions of the predictor variables in the 
model of the coverage of the environmental space by the survey sites (see section 2.3.1). Each plot represents a single 
predictor variable, as indicated in the label of the x-axis (see Table 3 for expansions of the abbreviations). The percentages in 
parentheses indicate the importance of that variable in the model at discriminating between sampled and unsampled parts 
of the environmental space. The values on the x-axes represent the range of values found in the predictive domain for each 
variable. The y-axis allows the graph to show the values of that variable that are well represented by samples (positive values) 
and the values that are not well represented (values near zero or negative). For example, there are many samples in the 
dataset that have values between zero and one for chla2 (Chlorophyll a), and few that have greater than a value of two.
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 4. Discussion

 4.1 Predicted patterns of abundance
This study predicted patterns of distribution and abundance for 72 reef fishes around New Zealand 
(detailed in Supplement 1). The spatial resolution of the predictions is a 1-km grid covering 
shallow (< 50 m) reefs located on the continental shelf around mainland New Zealand, as well as 
the Kermadec and Chatham Islands. The only shallow areas in New Zealand’s exclusive economic 
zone (EEZ) not included were those around the subantarctic islands, which are known to have a 
distinctive, relatively depauperate reef fish fauna (Kingsford et al. 1989). A mean (across species) 
of 43% of the deviance in reef fish abundance was explained by the models according to the cross-
validation procedure (see raw values in Table 2). This figure suggests that a reasonable degree of 
confidence can be placed in the predictions of these models.

 4.2 Measures of uncertainty
Quantitative measures of the uncertainty of the predictions permit the end users to know the 
degree of confidence that can be placed in them. The measure of mean deviance explained by the 
models for each species, which was based on cross-validation statistics, can be taken as an overall 
measure of the accuracy of the predictions for that species (Table 2). This is not spatially explicit, 
and is a single number that may be used to weight the species when combining them in a single 
analysis, as more confidence can be placed in the predicted distributions of species that have 
higher accuracy. 

Although the cross-validation method is more robust than traditional measures (Hastie et al. 
2001), it does not indicate how robust the models may be beyond the range of the biological 
dataset, chiefly because some areas into which we are predicting may have environmental 
characteristics that are not represented by the survey sites. We therefore provide a spatially 
explicit index of the coverage of the environmental conditions of each pixel by the survey dives 
(Fig. 5). This has relevance across all 72 predicted species distributions. 

Finally, bootstrapped confidence intervals for each species at each predicted site were calculated 
to give within-species, spatially explicit measures of uncertainty. These confidence intervals are 
available from the authors but are not presented here because of the additional space that would 
be required to do so. All of these measures of uncertainty can be incorporated into the use of the 
data in management applications, thanks to recent developments in reserve planning software 
(Moilanen et al. 2006). 

 4.3 Limitations and assumptions
It is important to note the limitations of these predictions imposed by the input data and the 
methods. They are not intended to be a definitive account of where each species can be found. 
The predictions are subject to the restrictions imposed by the survey method, and do not take 
into account factors such as diver-positive or diver-negative behaviour by fish (Cole 1994), or 
variation in detection probabilities (MacKenzie et al. 2002; 2003). Rather, these layers represent 
predictions of the fish assemblages that might be seen on a typical dive at each of these 
locations, which can fairly safely be assumed to be correlated with true local abundance. 

The samples and thus the predictions were limited to depths that could be dived safely. Although 
the predictive domain extended to the 50 m isobath, only 10% of the survey dives were deeper 
than 30 m, so predictions beyond this depth should be used with caution. 
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The predictions were made primarily on the basis of the suitability of the environment for each 
species. The models contained no explicit spatial information of any kind and disregarded 
biogeographic factors such as natural barriers to dispersal. Therefore, caution is needed in using 
the predictions for offshore island groups (such as the Chatham Islands). On the other hand, if a 
species does not occur at a location at which it was predicted to occur, this suggests that finer-
scale processes or factors other than the environmental and geographic variables used in the 
model are important in determining the species’ distribution.

A spatial resolution of 1 km applies to these predictions, chiefly because this was the resolution of 
the environmental variables provided by the MEC. Although this is a finer scale than that of any 
known published work on the distributions of New Zealand reef fishes, variation in abundances 
will occur at smaller spatial scales than this. This is due to variations in habitats between reefs 
that may occur within a pixel, or even within a single contiguous reef. The predictions are for 
known and inferred reefs but they assume that suitable habitat for each species is available on 
each of these reefs. Note, also, that the predictions were made for dives of 0 to 30 m depth at 
sites within 1 km of shore and 10 to 30 m for offshore sites. Variation in depth and its effects on 
species abundance obviously occurs at a far finer spatial scale than the predictions of this study. 
Therefore, predictions for species that are largely driven by depth, and those for species that have 
tight depth ranges, should also be treated with caution. For example, F. flavonigrum showed a 
strong preference for deeper water, but not all sites in the predictive domain may contain reef at 
the depths that this species is found.

Finally, no explicit spatial information on bathymetry or wave exposure was available at the scale 
and accuracy required by this study. For the latter, a geographical calculation of fetch was used 
instead, and this geographic approach has been shown to be a good proxy for wave exposure 
(Burrows et al. 2008). However, the inclusion of accurate and explicit measures for these factors 
would probably improve the accuracy of the models.

 4.4 Rare species 
Interestingly, four of the rare species which were included in this study because their 
distributions were of particular interest to DOC, were among the most successfully modelled in 
terms of the deviance in abundance that was explained by their respective models. One of these 
species (Odax cyanoallix) is largely endemic to Manawatawhi/Three Kings Islands (Choat & 
Ayling 1987, Francis 1996). Water surrounding this island group has a very low sstanom caused 
by local upwelling of cold water (Stanton 1973). This enabled the model to easily delineate the 
distribution of this species based almost entirely on this variable. The remaining rare species are 
all considered subtropical (Francis 1996), meaning that they require relatively high temperatures. 
This can result in good model performance, provided there is sufficient data to successfully 
establish the temperature threshold and that the species is fairly consistently present at locations 
above this threshold (e.g. Chromis dispilus, Fig. 2). This appears to be the case for Aplodactylus 
etheridgii, Epinephelus daemelii and Anampses elegans, which were very successfully modelled, 
but not the case for Trachypoma macracanthus and Zanclistius elevatus, for which the models 
performed poorly.

 4.5 Utility and future research
To date, only broad-scale information on the distributions of reef fishes has been published 
(Paulin & Roberts 1992, 1993; Francis 1996). This study presents the first attempt at modelling 
the distribution and relative abundance of reef fishes at such a fine spatial resolution and broad 
geographic extent. It follows that of Leathwick et al. (2006a) who first used this approach with 
marine species in New Zealand to predict the distribution and abundance of demersal fishes 
across the entire EEZ. 
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The improved predictions and understanding of the spatial patterns of reef fishes resulting from 
this work have a variety of applications. Their primary purpose is to inform the management 
of New Zealand’s coastal biodiversity and, in particular, the planning of MPAs. The predictions 
can support this process by revealing parts of the inner shelf likely to support diverse or unique 
biological assemblages (e.g. Beaumont et al. 2008, 2010) and, when used in conjunction with 
reserve planning software (Moilanen 2007; Moilanen et al. 2005), aid the design of MPA networks 
that effectively protect a representative range of species (Leathwick et al. 2008a, b).

In addition to the management applications, these models produced abundant information 
on the relationships between the distribution and abundance of reef fishes and several 
environmental and geographic variables. This information includes both the relative importance 
of the different variables for each species and the qualitative nature of their relationships. 
For example, sea surface temperature often showed a clear step function, implying minimum 
thresholds of tolerance for many species (e.g. Fig. 2). While conclusive statements about 
mechanistic processes cannot be made on the basis of this work, ecological hypotheses may be 
derived from the outputs of the models (Supplement 2) and then tested in future research. 
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  Appendix 1

  List of reef fish species modelled
The following table lists the species of reef fish for which the distributions and relative abundance 
were modelled in this study. The codes were used in naming files in supplements 1 & 2.

CODE 

 

FAMILY 

 

BINOMIAL 

 

COMMON NAME 

 

NUMBER OF DIVES IN WHICH 

THE SPECIES WAS OBSERVED 

(OUT OF 467)

Apl.arc Aplodactylidae Aplodactylus arctidens Marblefish 191

Apl.eth Aplodactylidae Aplodactylus etheridgii Notch-head marblefish 16

Cen.aff Berycidae Centroberyx affinis Golden snapper 29

Par.lat Blenniidae Parablennius laticlavius Crested blenny 97

Pla.tap Blenniidae Plagiotremus tapeinosoma Mimic blenny 33

Dec.koh Carangidae Decapterus koheru Koheru 65

Pse.den Carangidae Pseudocaranx dentex Trevally 65

Ser.lal Carangidae Seriola lalandi Kingfish 95

Tra.sp. Carangidae Trachurus novaezelandiae Jack mackerel 47

Amp.how Chaetodontidae Amphichaetodon howensis Lord Howe coralfish 27

Che.spe Cheilodactylidae Cheilodactylus spectabilis Red moki 212

Nem.dou Cheilodactylidae Nemadactylus douglasii Porae 84

Nem.mac Cheilodactylidae Nemadactylus macropterus Tarakihi 132

Chi.mar Chironemidae Chironemus marmoratus Hiwihiwi 69

Con.ver Congridae Conger verreauxi Common conger eel 85

Aty.lat Kyphosidae Atypichthys latus Mado 22

Gir.cya Kyphosidae Girella cyanea Bluefish 22

Gir.tri Kyphosidae Girella tricuspidata Parore 26

Kyp.syd Kyphosidae Kyphosus sydneyanus Silver drummer 23

Sco.lin Kyphosidae Scorpis lineolatus Sweep 182

Sco.vio Kyphosidae Scorpis violaceus Blue maomao 110

Ana.ele Labridae Anampses elegans Elegant wrasse 12

Bod.vul Labridae Bodianus unimaculatus Red pigfish 69

Cor.san Labridae Coris sandageri Sandager’s wrasse 74

Not.cel Labridae Notolabrus celidotus Spotty 349

Not.cin Labridae Notolabrus cinctus Girdled wrasse 45

Not.fuc Labridae Notolabrus fucicola Banded wrasse 340

Not.ins Labridae Notolabrus inscriptus Green wrasse 25

Pse.luc Labridae Pseudolabrus luculentus Orange wrasse 61

Pse.mil Labridae Pseudolabrus miles Scarlet wrasse 283

Sue.ayl Labridae Suezichthys aylingi Crimson cleanerfish 46

Lat.cil Latridae Latridopsis ciliaris Blue moki 148

Lat.lin Latridae Latris lineata Trumpeter 21

Men.lin Latridae Mendosoma lineatum Telescopefish 32

Par.sca Monacanthidae Parika scaber Leatherjacket 244

Lot.rha Moridae Lotella rhacina Rock cod 144

Pse.bar Moridae Pseudophycis barbata Southern bastard cod 28

Ald.for Mugilidae Aldrichetta forsteri Yellow-eyed mullet 55

Upe.lin Mullidae Upeneichthys lineatus Goatfish 154

Gym.pra Muraenidae Gymnothorax prasinus Yellow moray 44

Oda.cya Odacidae Odax cyanoallix Blue-finned butterfish 15

Oda.pul Odacidae Odax pullus Butterfish 157

Continued on next page
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CODE 

 

FAMILY 

 

BINOMIAL 

 

COMMON NAME 

 

NUMBER OF DIVES IN WHICH 

THE SPECIES WAS OBSERVED 

(OUT OF 467)

Pem.ads Pempheridae Pempheris adspersa Bigeye 83

Zan.ele Pentacerotidae Zanclistius elevatus Long-finned boarfish 13

Par.col Pinguipedidae Parapercis colias Blue cod 275

Chr.dis Pomacentridae Chromis dispilus Demoiselle 133

Par.alb Pomacentridae Parma alboscapularis Black angelfish 69

Hel.per Scorpaenidae Helicolenus percoides Sea perch 63

Sco.car Scorpaenidae Scorpaena cardinalis Northern scorpionfish 44

Sco.pap Scorpaenidae Scorpaena papillosus Dwarf scorpionfish 154

Cae.lep Serranidae Caesioperca lepidoptera Butterfly perch 216

Cap.lon Serranidae Caprodon longimanus Pink maomao 60

Epi.dae Serranidae Epinephelus daemelii Spotted black grouper 19

Hyp.hun Serranidae Hypoplectrodes huntii Red-banded perch 80

Hyp.spB Serranidae Hypoplectrodes sp.B Half-banded perch B 57

Tra.mac Serranidae Trachypoma macracanthus Toadstool grouper 14

Pag.aur Sparidae Pagrus auratus Snapper 85

Can.cal Tetraodontidae Canthigaster callisterna Clown toado 34

Opt.elo Trachichthyidae Optivus elongatus Slender roughy 137

Par.tra Trachichthyidae Paratrachichthys trailli Common roughy 46

For.lap Tripterygiidae Forsterygion lapillum Common triplefin 203

For.mal Tripterygiidae Forsterygion malcolmi Banded triplefin 284

For.var Tripterygiidae Forsterygion varium Variable triplefin 343

Fst.fla Tripterygiidae Forsterygion flavonigrum Yellow-black triplefin 258

Gra.gym Tripterygiidae Grahamina gymnota Robust triplefin 23

Kar.ste Tripterygiidae Karalepis stewarti Scaly-headed triplefin 82

Not.cae Tripterygiidae Notoclinops caerulepunctus Blue dot triplefin 67

Not.seg Tripterygiidae Notoclinops segmentatus Blue-eyed triplefin 269

Not.yal Tripterygiidae Notoclinops yaldwyni Yaldwyn’s triplefin 86

Obl.mar Tripterygiidae Obliquichthys maryannae Oblique-swimming triplefin 251

Rua.whe Tripterygiidae Ruanoho whero Spectacled triplefin 250

Zeu.fab Zeidae Zeus faber John dory 27

Appendix 1 continued 
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  Appendix 2

  Online data files
Spatial data from this project are available online at http://www.doc.govt.nz/publications/science-
and-technical/products/series/science-for-conservation/ in four *.zip files associated with this 
publication (Science for Conservation 323): 

EntireDomain_ASCII.zip

EntireDomain_Esri.zip

ReefOnly_ASCII.zip

ReefOnly_Esri.zip 

These files are named according to the predictive domain for which predictions are made (i.e. the 
EntireDomain, or a subset containing the locations of ReefsOnly), and the format in which the 
data are provided (ASCII indicates the files are in standard *.asc grid format, and Esri indicates 
*.rrd raster format for ArcGIS).

Each *.zip file contains three folders. Abundance contains the estimated abundance for each of 
the 72 species of fish; CoverageEnvrSpace contains the estimated coverage of the environmental 
space (see Section 2.3.2), and SpeciesRichness contains estimated species richness at each site 
based on separate BRT model of the number of species seen on each dive. Lower and upper 
95% confidence intervals are provided in folders named lowerCI and upperCI for the ReefOnly 
domain. These were not calculated for the EntireDomain because of the large computation time 
it would have required. 

The coordinate reference system of the spatial data provided here is the same as the input 
variables from the Marine Environment Classification (Dey & Weatherhead 2005), specifically

Projection = Mercator 

Central Meridian = 100 

Standard Parallel = –46 

False Easting = 0 

False Northing = 0 

Spheroid/Datum = Clarke 1866
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