
47Science for Conservation 293

	 10.	 General conclusions 

There is now convincing evidence that many of our threatened avian endemics 

have lost considerable genetic variation since the arrival of humans and their 

associated introduced pests and predators. The most vulnerable endemics are 

already extinct, and extant threatened species only survive in small numbers 

in isolated mainland habitats or on offshore islands and generally possess low 

levels of genetic diversity. The eradication and control of introduced predators, 

particularly on many offshore islands, has enabled populations of highly 

threatened species to recover in numbers and thus reduced their immediate 

extinction risk, although many species confined to the mainland continue 

to show worrying signs of population decline. As long as populations are in 

decline due to extrinsic pressures such as introduced predators, intrinsic factors 

such as genetic diversity and inbreeding depression are of little consequence 

because their impacts on population fitness are much more gradual. Perhaps 

counter-intuitively, the greatest impact of genetic factors will be found in small 

populations that have stabilised or are growing slowly due to management. 

Because mutation rates (which ultimately generate new genetic variation) are 

relatively slow, genetically depauparate species continue to be at risk due to 

reduced immune capabilities associated with genetic homogeneity as well as the 

reduced ability to genetically adapt to changing environmental pressure through 

the process of natural selection. 

The potential for further and immediate losses of genetic variation during 

founder events of translocated populations is also a potential problem. However, 

studies have so far indicated that founder events are not as important (as long as 

reasonable numbers of individuals are transferred and released) as the subsequent 

increase in the rate of inbreeding and genetic drift associated with small, finite 

population sizes of island sites. Conservation biologists worry particularly about 

inbreeding because it not only leads to reduced genetic diversity (and hence 

reduced adaptiveness and increased vulnerability) but it also reduces individual 

fitness, mostly as a consequence of the increased probability of expressing 

deleterious recessive alleles. To what extent reduced individual fitness translates 

into reduced population fitness and growth rates will depend on the frequency 

of close inbreeding, the overall rate of inbreeding, the magnitude of inbreeding 

depression and which life history traits are affected. For example, an effect on 

early life history traits such as depressed hatching rates may not be as detrimental 

as effects on later life history traits such as lower juvenile recruitment rates, 

although it is likely that loss of fitness due to inbreeding depression will 

accumulate across life history stages (Szulkin et al. 2007). 
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	 11.	 Recommendations

The following recommendations have arisen from this research programme:

Guidelines for translocations should be updated to include information that •	

ensures potential issues surrounding genetic diversity and inbreeding are 

flagged and addressed. (See section 1.)

Given that a number of studies have failed to detect adverse effects of taking •	

a small quantity of blood from birds (if done properly), and that blood has 

several advantages over feathers (although the latter is preferred over not 

taking any samples), it is recommended that proposals for translocations 

include a section to justify why samples for DNA analysis are not required 

(e.g. ‘Recovery group indicated samples were collected during two previous 

translocations and further samples are not required’). Otherwise, details for 

collecting a small (< 0.1 mL) quantity of blood from each individual (rather 

than minimum numbers) should be specified, and potential research questions 

and outcomes outlined, even if a science provider to carry out the analysis has 

not yet been identified. (See section 3.)

Given that mainland populations tend to retain greater genetic diversity than •	

island populations, resources for predator control on mainland sites (rather 

than exclusively for island populations) should be maintained or increased to 

retain this important source of genetic diversity. (See section 6.)

Maintaining genetic diversity in small island populations for relatively low-•	

density species such as takahe will be extremely difficult without management 

intervention. Releasing one (reproducing) individual per generation may 

circumvent most effects of population isolation, while minimising the stress 

and expense associated with translocation. However, unless a population 

is exhibiting severe inbreeding depression or is on the verge of extinction, 

mixing subspecies or strongly divergent populations (i.e. those that have been 

separated for thousands of years) should be avoided. (See section 6.)

Both ecological and genetic criteria need to be considered when assessing •	

needs and impacts of translocation (currently in New Zealand only ecological 

concerns tend to be stressed). For example, when deciding on numbers of 

individuals and from where to source them, there should be justifications that 

the translocation is unlikely to result in significant loss of genetic diversity 

or genetic representation. Any translocation that would result in a serial 

bottleneck of a threatened species, or would involve mixing of subspecies or 

historically divergent populations, should require clear and strong justification. 

Finally, translocations that are carried out solely for the purpose of potentially 

increasing genetic diversity and/or population fitness should be considered 

experimental at this stage and should be designed with care. (See section 6.)

For translocations and reintroductions, consideration should be given to •	

the minimum number of individuals that should be released, rather than 

just focussing on the minimum number of individuals needed to establish 

a breeding population, to limit the loss of genetic variation due to drift and 

minimise the probability of close inbreeding while the population is still small. 

Although formal modelling has yet to be carried out, studies of SI saddlebacks 
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and mohua that are currently in progress suggest that island populations 

should be established with a minimum of 15–30 pairs (30–60 individuals), 

respectively (see section 6). For intensively managed species such as takahe, 

kakapo and kokako, further precautions over founder representation are 

advised to prevent a disproportionate number of the descendants coming 

from relatively few successful pairs/females (see section 7).

The rate at which the mean level of inbreeding increases in a closed population •	

is primarily dependent on the carrying capacity of the site. For species with 

low population densities, it is strongly urged that recovery groups assess the 

potential carrying capacity of relatively small sites and estimate the likelihood 

of requiring future translocations to prevent high levels of inbreeding being 

reached. As a general rule, an outbred population with a stable population 

size of ten individuals (= five breeding pairs) will become inbred at F > 0.25 

(brother–sister relatedness) in six generations; this level will be reached more 

quickly if the population size fluctuates or if individuals are harvested for 

translocation. Note that recruitment rates of newly translocated immigrants 

will be relatively low at the population’s carrying capacity, making the 

management goal of reducing the level of inbreeding even more difficult 

to achieve. Even islands or fenced reserves containing populations with 

relatively high numbers (e.g. 100–200 individuals) will require some form 

of management (e.g. introducing new genetic stock) to reduce the level of 

inbreeding. (See section 7.)

Although current studies did not examine the relationship between •	

inbreeding depression and lowered population viability, it would be unwise 

to ignore a considerable volume of theory and other evidence that shows 

such a link. Future modelling efforts will provide a clearer picture of the 

effects of inbreeding on population fitness, and indicate how long managers 

have before they may need to act. It needs to be stressed that the negative 

consequences of inbreeding depression on growth rates of populations 

established on predator-free sites will occur only after many generations of 

inbreeding—while the risk of reinvasion by rats and stoats to the same islands 

is a day-to-day threat. Nevertheless, assuming that predator reinvasions can 

be managed and their risk to the population minimised, it is recommended 

that managers attempt, where practical, to also minimise the build-up of high 

levels of inbreeding. (See section 8.)

There is increasing evidence of a link between loss of genetic diversity •	

and increased susceptibility to disease. The generally low levels of genetic 

diversity found in many of our endemics is a reminder of their vulnerability 

to diseases and of the need to try to minimise further losses, especially for 

more genetically diverse species. The best way to prevent further losses is 

to avoid prolonged population bottlenecks and maintain gene flow across 

recently isolated populations, through translocation if necessary. However, 

it needs to be recognised that very little can be achieved through direct 

management in single-population species that have already lost significant 

genetic variation, except of course to minimise the risks of introducing disease.  

(See section 9.)
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These recommendations should not be seen as conclusive or in isolation from 

other factors, but rather as new data and evidence to be considered alongside a 

host of other data, evidence and policy used to inform management decisions. 

Many of the results of this research remain inconclusive partly because of the 

nature of studying processes that work across generation times rather than years. 

Inevitably, there is a call for more research and more funding to understand 

further what everyone agrees are complicated processes.
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		  Appendix 1  

		  D e finitions          and    conc    e pts 

There are two main fitness consequences of small population sizes that are 

important to distinguish throughout this paper:

Loss of genetic diversity1.	 : This is caused by stochastic processes such as 

genetic drift (random loss of alleles due to mortality or failed breeding) and 

founder effects (random loss of alleles during founder events), which are 

much more likely to occur when populations have gone through a bottleneck 

event (see below). Inbreeding can also cause loss of genetic variation in that 

it results in decreased heterozygosity and increased homozygosity.

Inbreeding depression2.	 : This is where inbreeding leads to a reduction 

in individual fitness through an increase in homozygosity across genomes, 

which results in either the loss of heterozygous advantage or the increased 

expression of homozygous recessive alleles, which are often harmful and lead 

to an immediate reduction in fitness of the related parents. 

How does a population bottleneck result in genetic bottleneck? When a 

population experiences a bottleneck event (such as loss of habitat, predator 

outbreak or a translocation), the surviving population is small relative to the 

original population. As a simple consequence of the small sample size and chance, 

rare alleles tend to be lost and not represented in the surviving population, and 

common alleles can be over/under-represented relative to their proportion in the 

original population. Loss of genetic variation during founder events associated 

with translocation can occur at the point of initial capture, or as a result of poor 

survival of released birds or differential breeding success of released pairs. 

It is worth noting that the small surviving population is also likely to be subject to 

inbreeding. Inbreeding does not result in loss of alleles but leads to a decrease in 

heterozygosity and an increase in homozygosity of alleles, which is a form of loss 

of genetic variation (see Box 1). The long-term consequence of loss of genetic 

diversity is a reduced evolutionary responsiveness, which can lead to a reduced 

ability of a population to adapt to changes in the environment such as new 

pathogens/diseases or long-term climate change. Note that the consequences 

of loss of genetic variation tend to be long-term and the impact depends on 

how much the environment changes; i.e. loss of genetic diversity might have no 

immediate negative consequences as long as the environment the animals are 

living in remains more or less constant. 

It is sometimes worth distinguishing between ‘within population’ inbreeding, 

which is mating between relatives, and ‘between population’ inbreeding, 

where one population is more inbred than another and thus has lower fitness  

(Keller & Waller 2002). Inbreeding can result in mutants or ill-formed offspring, but 

in wild populations these will often die and therefore be less likely to be detected. 

It can be helpful to think of inbreeding as resulting in increased susceptibility 

to environmentally inflicted mortality. Indeed, recent research suggests that 

inbreeding depression may be difficult to detect in benign environments where 

inbred individuals can have similar fitness to outbred individuals (Keller & Waller 

2002). In other words, inbreeding depression is often environmentally sensitive.
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Box 1.   What is meant by genetic diversity?

The diagram below illustrates the two main metrics used to quantify genetic 

diversity—allelic diversity, which describes the number of alleles present at a 

given genetic locus, and observed heterozygosity (H), which is the proportion 

of individuals in a population that are heterozygous at a particular locus.

Each locus (a section of a chromosome) of an individual consists of two 

alleles (one copy each from the mother and father), and these in combination 

form a genotype. Alleles (a–k) separate out on the gel according to their 

weight. In the example shown for one locus sampled across 19 individuals 

(all from the same population), there are 11 different alleles and 14 different 

genotypes, for which 13 of 19 individuals (68%) are heterozygous (have 

two different alleles) and the remaining 6 (32%) are homozygous (have two 

copies of the same allele, and hence appear darker on the gel). This locus 

would be considered to show a high level of genetic diversity because of the 

relatively large number of different alleles in the population and the large 

proportion of heterozygotes. After amplifying a number of different loci in 

the 19 individuals, the number of alleles per locus and the proportion of 

heterozygotes averaged across loci can be calculated to estimate the genetic 

diversity of the population.

The diagram below shows one microsatellite DNA locus of the South Island 

saddleback (Philesturnus carunculatus carunculatus), and illustrates that 

genetic diversity was extremely low in the remnant population on Taukihepa 

(Big South Cape Island) and in the contemporary populations on Kaimahu 

and Big Islands relative to historic populations on the mainland.
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When managers are uncertain about whether to source individuals for 

translocations from a single (possibly bottlenecked) population or from two or 

more separate populations, they are normally concerned about genetic variation 

and giving the reintroduced population its best chance at long-term survival. 

On the other hand, when managers try to boost the population growth rate of a 

small isolated population on a predator-free island (which may be experiencing 

lower than normal fertility rates or low juvenile recruitment) by introducing new 

breeding stock from a more genetically diverse population, they are concerned 

about the effects of inbreeding depression. Although both loss of genetic 

diversity and inbreeding depression have important implications for conserving 

populations, there is a tendency for the maintenance of genetic variation during 

reintroductions to take a lower priority because the beneficial effects are often 

insidious and take a long time to manifest—normally outside the timeframes of 

standard recovery programme planning.

Genetic diversity is measured using molecular markers such as microsatellites 

and is estimated in two ways: 

The average number of alleles per locus (which when weighted by differences 1.	

in sample sizes between populations is referred to as allelic richness) 

The proportion of alleles that are heterozygous (2.	 H) (see Box 1) 

Inbreeding is best measured through the use of pedigrees, as the use of molecular 

markers to estimate levels of heterozygosity and hence infer the level of inbreeding 

is less accurate and controversial (Grueber et al. 2008b). When derived from 

pedigrees, inbreeding is estimated in terms of inbreeding coefficients (F), which 

represent the probability that two alleles will be identical (homozygous) due to 

inheritance through a common ancestor. It is important to note that individuals 

can attain homozygous alleles due to chance, but that this probability increases 

with increasing levels of relatedness between the mother and the father. The 

highest level of inbreeding in any one generation is F = 0.50, for organisms that 

are able to self (e.g. plants) and 0.25 for organisms that reproduce sexually  

(see Table A1.1). However, inbreeding can accumulate across generations; if the 

offspring from a full-sib pairing also paired and bred, then their offspring would 

have an F = 0.375. Furthermore, in very small, closed populations, inbreeding 

is unavoidable because eventually all individuals become closely related, even 

if they avoided mating with their closest kin. For example, if we assume that a 

breeding population is fixed at two pairs and each pair has a male and female 

offspring, even if these offspring outbreed each generation, average F increases 

so that after just four generations all breeders 

are related to each other at F = 0.25. Researchers 

tend to distinguish between an increase in the 

mean level of inbreeding due to mating between 

close relatives and that due to the background 

level of inbreeding.

Technically, only individuals can have inbreeding 

coefficients, while breeding pairs share kinship 

coefficients, which is equivalent to the inbreeding 

coefficient of the pair’s offspring. Nevertheless, 

many studies will refer to a pair’s inbreeding 

coefficient when expressing the degree of 

relatedness between a mother and father.

Type of mating	 F

Selfing	 ½	 (0.50)

Full-sibs	 ¼	 (0.25)

Uncle × niece; aunt × nephew; double cousins	 1∕8	 (0.125)

First cousins	 1∕16	 (0.0625)

First cousins once removed	 1∕32	 (0.03125)

Second cousins	 1∕64	 (0.0156)

Second cousins once removed	 1∕128	(0.0078)

Table A1.1.    Coefficient of inbreeding (F )  for 

any offspring produced from matings between 

various kinds of relatives. 



Do New Zealand threatened birds have low genetic diversity 
and high levels of inbreeding?

Many New Zealand threatened bird species persist in small and 
isolated populations. Research indicates that temporary bottlenecks 
associated with translocations contribute less to the loss of genetic 
variation than the small sizes of island populations. Inbreeding 
within these island populations can result in further reductions 
in individual fitness. There is evidence of moderate inbreeding 
depression in North Island robins on Tiritiri Matangi and weak 
inbreeding depression in takahe translocated to offshore islands. 
The maintenance of genetic diversity should become a fundamental 
component of long-term management strategies for threatened 
species in New Zealand.
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