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remnant channels, which form adjacent to active channels. These springs 

are formed by the constricted river cutting down into the alluvium, and 

intersecting the water table, rather than spreading laterally. Bank vegetation 

is the principal control on lateral channel movement (M. Hicks, NIWA, 

pers. comm.) and, hence, deep scouring by constricted flows. In the lower 

Selwyn River/Waikirikiri, springs that occur in the scoured beds of remnant 

channels likely provide refugia for fish and invertebrates during summer 

low-flow periods in the river, although this hypothesis has yet to be tested. 

Gray (2005) noted spring up-welling complexes formed in the lee of flood 

retention works in the upper Waimakariri River at Klondyke Corner. Kilroy 

et al (2004) collected 42 algal taxa in one of these sites, by far the highest 

diversity of any of the 24 sites sampled. Whilst it is interesting that human 

activities can be constructive as well as destructive in terms of habitat, we 

must recognise our lack of knowledge of the long-term effects of activities 

such as gravel extraction, flood bank construction and riparian planting 

of exotic trees on the distribution and permanence of springs. In general, 

construction of flood control barriers results in the reduction of invertebrate 

and habitat diversity seen in many channelised european rivers (Claret et al. 

1999; Pringle 2001; Hohensinner et al. 2004).

The braided rivers of the South Island were formed in the last 20 000 years 

as a result of glacial action, rainfall and snow melt (Gage 1977). Continuous 

erosion of friable bedrock, coupled with high and unpredictable rainfall, 

maintains these rivers in a constant state of morphological dynamism. The 

alluvium that has accumulated within glacial valleys is highly permeable, 

and carries an alluvial aquifer within a sinuous lattice of preferential flow 

paths (Huggenberger et al. 1994; Woessner 2000; Poole et al. 2002). This 

aquifer provides stable inputs of water for springs, despite the irregularity 

of precipitation in each catchment.

Over time, reductions in porosity and hydraulic conductivity may occur 

because of the intrusion of fine sediments into interstitial spaces, or through 

bed-armouring processes. The clogging of the top layer of the channel 

sediments with fine sediment is termed ‘colmation’ (Brunke 1999). Under 

natural flow regimes, fine sediment is removed by high-flow events involving 

bed load movements, thereby resetting the colmation process (Brunke & 

Gonser 1997). Impoundment of the River Spol in Switzerland resulted in 

decreased discharge and a flow regime unable to effect bed mobilisation, 

leading to clogging of the bed interstices (Murle et al. 2003). A similar 

experiment conducted in the River Rhone flood plain revealed the importance 

of high-flow events for maintaining connectivity between surface waters and 

groundwaters (Claret et al. 1999). The pristine headwaters and natural flow 

regimes of many rivers are critical to groundwater–surface-water connectivity, 

as they maintain the aquifer recharge required to supply flow to many springs 

found along flood-plain reaches (Poff et al. 1997).

Impoundment is a feature of many large rivers. Since 1950, 10 000 km3 of 

water (more than five times the volume of water in all the world’s rivers) 

have been impounded in reservoirs globally (Rosenberg et al. 2000). Despite 

the damming of many of New Zealand’s largest rivers, such as the Clutha, 

Waitaki, Waikato, Rangitaiki and Waiau, little research has been undertaken on 

the geomorphological and ecological consequences for groundwater–surface-
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water exchange, or their spring complexes. However, there is a wealth of 

international and New Zealand literature summarising the general downstream 

effects of flow regulation brought about by impoundment (e.g. see Henriques 

1987; Rosenberg et al. 2000). Overall, dams and river diversions have proven 

to be severely detrimental to aquatic habitat, contributing to the destruction 

of fisheries, extinction of species and the loss of ecosystem services vital 

to the human economy (Pringle et al. 2000; Rosenberg et al. 2000). In 

particular, the negative impact of flow regulation upon the morphological 

and successional diversity of flood plains has been highlighted (Ward & 

Stanford 1995; Gilvear 2004; Hohensinner et al. 2004; Choi et al. 2005).  

A reduction in channel-forming flows and sediment load reduces the rate of 

channel migration, which is important for maintaining high levels of habitat 

diversity. High biodiversity in flood-plain ecosystems is a function of the 

diversity of water bodies with differing degrees of connectivity with the main 

channel, and the range of successional stages present due to historic channel 

migrations (e.g. Reinfelds & Nanson 1993). The effect of flow regulation is 

similar to that of channelisation, in that it truncates the fluvial system and 

disconnects the river from its flood plain (Hohensinner et al. 2004).

Since the 1930s, the morphology of the lower Waitaki River in the southern 

South Island has been significantly altered, predominantly by impoundment 

for hydro-electrical power generation. The reduction in flow variability and 

sediment input due to impoundment has caused an increase in channel 

stability. In the Duntroon area, encroachment of the river by exotic vegetation 

has reduced the width of the un-vegetated flood channel by 250 m (Meridian 

energy 2003). Over the same time period the river has changed from a 

braided system to one characterised by more stable anastomosing channels 

(Meridian energy 2003). The changes in channel morphology have resulted 

in a reduction in flood-plain area and associated habitat heterogeneity, with 

potential for loss of species adapted to life within the shifting habitat mosaic 

of braided rivers (Gray 2005). Although groundwater-fed channels were 

recorded in the lower Waitaki in 2003 (Meridian energy 2003), the long-

term effects of channel morphology changes on them are unknown. 

Natural flow regimes maintain a mosaic of variable groundwater–surface-

water exchange and contribute to the formation of braided river springs. 

Without high levels of disturbance in the main channel, vertical and lateral 

hydrological connectivity are reduced, and result in the loss of springs, which 

can be considered ‘hotspots’ of biodiversity within the braided river corridor 

(Gray et al. 2006). Anthropogenic activities such as diversion, channelisation 

and impoundment can have severe impacts upon the balance of dynamic 

riverine systems. Consideration of the biodiversity values of a river system 

must take into account habitat diversity and functional integrity of the whole 

system. The 3-dimensional aspect of flood plains, longitudinal linkages and 

connectivity between adjacent elements in the landscape mosaic should be 

central features of our management of braided rivers (Pringle 1997; Ward et 

al. 1999; Pringle 2001; Malard et al. 2002; Wiens 2002).
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 6. Management and conservation  
of springs

Direct (e.g. water abstraction) and indirect (e.g. domestic animal grazing) 

utilisation of springs by society produces a wide variety of benefits to 

humans, but these uses may also be associated with significant costs to 

the environment, including biodiversity loss and deterioration of water 

quality, which threaten the ecological integrity of spring ecosystems. 

effective management of springs will be achieved by recognising the full 

range of environmental and societal values associated with these habitats, 

understanding threats to the sustainability of these values and formulating 

strategies that provide a balance between potentially conflicting uses.

Throughout the world there is a growing recognition of the value of springs, 

and several initiatives have been implemented to ensure their protection and 

sustainable management. In the eastern USA, the Florida Springs Task Force has 

outlined steps for protecting and restoring Florida’s springs and underground 

aquifers (Hartnett 2000), while in the west a conference focusing on spring-

fed wetlands in Las vegas, Nevada, has helped to unite visions on spring 

habitat management (Sada & Sharpe 2004). Moreover, the Bureau of Land 

and Management, USA, has also produced a guide to effectively manage and 

protect western freshwater springs (Sada et al. 2001). In Germany, the Society 

of Spring ecology and Conservation (SSeC) has played an important role in 

producing valuable information related to spring habitats with the creation 

of the journal Crunoecia. SSeC also organised the first european symposium 

on spring ecology and conservation. In Australia, the Great Artesian Basin 

(GAB) is the focus of a group of researchers that meets annually to discuss 

questions related to the management and protection of springs. Furthermore, 

the South Australian Department for the environment has published a plan 

for the management of Australian mound springs (Fatchen 2000). More 

broadly, the Australian federal government has developed national strategies 

for the management of groundwater-dependent ecosystems (GDes; Sinclair 

Knight Mertz 2001). The goal is to provide water for the environment to 

sustain and where necessary restore ecological processes and biodiversity of 

GDes, such as springs.

 6 . 1  S P R I N G S  A S  G R O U N D W A T e R - D e P e N D e N T 
e C O S Y S T e M S

We believe that a GDe management framework (Hatton & evans 1998) may 

be applicable and beneficial to springs management in New Zealand, although 

it will form only part of a complete management framework. Recognition of 

springs as GDes is essential to their management and protection, because 

groundwater abstraction and consumptive use, as well as land-use practices 

impacting on aquifer quality, are key threats to the integrity of spring 

habitats.
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Hatton & evans (1998) recognised five classes of ecosystem dependency on 

groundwater attributes (e.g. flux, level, pressure, quality): entirely dependent, 

highly dependent, proportionally dependent, opportunistically dependent and 

not dependent. Many springs can be classified as falling into the ‘entirely 

dependent’ category, because even slight changes in groundwater attributes 

can lead to their demise. However, some spring types (e.g. linear alluvial 

springs) may be also classified under the ‘highly dependent’ category, as 

these ecosystems may be adapted to naturally varying groundwater levels.

There are four key steps to developing GDe management strategies:

1. Identify potential GDes

2. Determine the degree of ecosystem dependency on groundwater

3. Assess the water regime in which dependency operates

4. Determine the environmental water requirement

With regard to the management of springs, Steps 1 and 2 are implicit, whereas 

Steps 3 and 4 require assessments of the full range of existing groundwater 

water uses and the effects different uses have on ecosystem integrity. As is 

the case with freshwater ecosystems throughout the world, determining a 

spring’s environmental water requirements is a challenging task. In springs, 

complete loss of flow would be devastating, but the ecosystem may be able 

to function at reduced levels of groundwater flux, pressure or quality.

 6 . 2  K e Y  e L e M e N T S  O F  A  S P R I N G  M A N A G e M e N T 
F R A M e W O R K

As with any management strategy, the clear definition of management goals 

for springs is a precursor to effective conservation, protection and restoration. 

Set out below, we provide a synopsis of steps followed in spring management 

worldwide, and recommend key elements that we believe should form the 

basis of a spring management strategy in New Zealand.

	 6.2.1	 Spring	mapping

Mapping of springs is essential to estimate spring densities and describe 

broad-scale environmental characteristics. In New Zealand, the first attempt 

to create a national spring database has yielded 527 springs over a 2-month 

period (see section 2.2.1). Spring locations were obtained through polling of 

management agency staff and the freshwater science community. This database 

is complemented by an additional 1400–1500 springs in the pre-existing eCAN 

database. Further work is required to expand the spring database, and to link 

it to available physico-chemical and biological data. It should be noted that 

current freshwater classification schemes in New Zealand (e.g. ReC) do not 

explicitly include spring habitats. Further development of a spring database 

may allow this to be rectified in the future.

Several spring mapping surveys have also been carried out on a regional 

level in Germany (Groever et al. 1996; Hotzy 1996; Krueger 1996). In the 

district of Gueterlosh (220 km2), 203 springs were located in a 12-month 

period (Groever et al. 1996), whereas 700 springs were recorded over 3 years 

in Brandenburg (29 000 km2), although this has been suggested to be only 
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10% of the estimated total number (Krueger 1996). extrapolation of spring 

densities and types from one region to another is likely to generate significant 

errors, as spring numbers and typology are highly influenced by regional 

hydrogeology (van everdingen 1991; van der Kamp 1995). Moreover, locating 

spring sites and collecting information (i.e. past disturbances, land uses) 

involves extensive public consultation with locals and private landowners, 

and thus must be tackled at a regional level. GIS techniques have proved 

quite efficient for the retrieval of information on springs such as land uses, 

vegetation, underlying geology and climate data, but ground-truthing of such 

information is vital.

	 6.2.2	 Spring	habitat	assessment

A full-scale scientific investigation of all springs within a region is unlikely 

to be justifiable. However, the evaluation of spring ecosystem conditions 

is necessary to record basic information, which will be used to establish 

management and restoration priorities. This information should include 

discharge characteristics, habitat structure, flora, fauna and water chemistry. 

Different methods can be used for spring habitat assessment. In Australia, 

the GDe approach (see section 6.1 above) has been useful for spring 

management (e.g. Fatchen 2000), and this approach may also be useful in 

New Zealand. In Germany, environmental quality indices are in widespread 

use (Hinterlang & Lischewski 1993), with specific evaluation methods for 

spring flora and riparian vegetation (Hinterlang et al. 1993), fauna (Fischer 

1996; Zollhöfer & Gonser 1998) and water chemistry (Andree et al. 1996) 

currently in use. Assessment of proper functioning condition of spring 

habitats can also be used for rheocrene (Prichard et al. 1998) or limnocrene 

and helocrene (Prichard et al. 1999) spring types as suggested by Sada et 

al. (2001). Recording of exotic and rare species, disturbance conditions and 

conflicting issues with management objectives is highly desirable (Sada & 

Pohlmann 2003). The assessment process should also clearly identify existing 

and potential threats to the range of values provided by springs.

	 6.2.3	 Management	priorities	and	direction

Once spring biotic and abiotic characteristics have been evaluated, and the 

management needs identified, then management priorities and direction 

can be developed. examining habitat condition and determining whether a 

spring needs protection or restoration will determine management responses. 

Priority should be assigned to protecting unaltered spring habitats and 

restoring habitats with a high potential for recovery (Sada et al. 2001). 

Selected habitats may also need protection to prevent further degradation 

until restoration activities start to take effect.

There are many factors that can be considered in setting up management 

priorities, and resource agencies must decide which ones are most appropriate 

for their region and conservation programmes (Sada & Pohlmann 2003). 

Springs within a region can be ranked according to their resource values 

and restoration needs using matrix analysis (Sada et al. 2001). This would 

indicate the relative importance of each spring and how each one can be 

considered during management and restoration programmes (Sada et al. 2001; 

Sada & Pohlmann 2003). Consequently, resources can be allocated according 

to the management priorities that have been set.
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	 6.2.4	 Spring	monitoring

The efficiency of management strategies and progress towards stated goals 

can be assessed through monitoring programmes. These programmes should 

be designed to quantitatively describe biotic communities, riparian habitats 

and spring flow characteristics, accounting for their spatial and temporal 

variability. Moreover, monitoring surveys should become less intensive as 

more information is gathered on biotic and abiotic natural variability (Sada 

& Pohlmann 2003). Changes outside natural ranges can be determined as 

excessive, while those within the natural range are likely to be acceptable. 

Site selection for monitoring is crucial and appropriate reference sites for 

intermittent and/or altered springs will be required to allow separation of 

changes associated with anthropogenic and natural changes (Sada & Pohlmann 

2003). Because spring habitats can be sensitive to disturbance, particularly 

where local endemics may occur, the frequency and destructiveness of 

sampling techniques used in the monitoring programme should be carefully 

considered (Resh 1983). Monitoring programmes should be part of any 

management plan in order to review and update management strategies to 

achieve desired goals. Monitoring methods would also need to be consistent 

with initial assessment methods so as to have comparable baseline and post-

management datasets.

 6 . 3  P R O T e C T I O N ,  e N H A N C e M e N T  A N D  R e S T O R A T I O N 
O F  S P R I N G  H A B I T A T S

The environmental context (e.g. hydrogeological properties, land use) of a 

given spring should be carefully considered when determining management 

actions to protect, enhance or restore ecological integrity. For example, 

fencing and exclusion of cattle from spring habitats have different effects on 

springs in arid and temperate regions. In temperate regions, cattle exclusion, 

which is one of the first measures implemented by spring restoration 

programmes in Germany (e.g. ‘Aktionsprogramm Quellen’, J. Römheld, 

Bayerisches Landesamt für Wasserwirtschaft, München, 2005, pers. comm.), 

helps to re-establish woodland vegetation, which contributes to enhanced 

habitat quality. In contrast, exclusion of livestock reduced plant diversity 

and free water areas in springs of the GAB because of large increases in 

vegetation biomass of the most competitively superior species (Fatchen 

2000). The appropriate management regime should take into account the 

natural condition of a spring with respect to exclusion of grazing animals. 

A grazing/non-grazing rotation programme or the maximisation of desirable 

outcomes can be the solution to manage spring habitats successfully in arid 

regions (Fatchen 2000).

In pre-human times (1000 years BP), most of New Zealand was heavily 

forested and ungulate grazers were absent. Therefore, the natural condition 

of most springs in New Zealand would have included extensive riparian 

vegetation and a very different grazing regime from that found now, so 

protection and restoration of these habitats should take this into account.
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Delineation of the spring recharge basin is desirable in order to protect spring 

water quality (Jensen et al. 1997), despite it being difficult to achieve— 

it requires a detailed knowledge of underlying geology and groundwater 

flows. However, it will help to identify possible areas that may act as sources 

of groundwater pollution, and to develop best management practices through 

local land-use planning. Areas adjacent to spring sources, or in their recharge 

basins, have been purchased as part of restoration programmes in Florida 

(Hartnett 2000) and Germany (Buechler & Hinterlang 1993; Hurck 1996).

Springs and a portion of their associated springbrooks should be protected 

from activities that decrease biological diversity and cause functional changes. 

Groundwater abstraction close to the spring and development around the 

spring should be carefully controlled. Diversions, impoundment or other types 

of habitat modifications, when necessary, should not be done within the first 

50 m of the spring and should stop drawing water when it is not needed 

(Sada et al. 2001; Sada & Pohlmann 2003). Where fish access to springs is 

a desired management goal, appropriate measures should be taken to ensure 

uninterrupted access (e.g. fish-friendly culvert design). Appropriate native 

riparian vegetation (i.e. woodland vegetation or grasses) should be planted 

or allowed to grow to restore sediment and nutrient run-off filtering and to 

stabilise spring banks (Collier et al. 1995). Proper management practices, 

such as construction of sign-posted walkways, toilet facilities and rubbish 

containers will also protect springs on public lands from damage associated 

with recreational use (Fatchen 2000; Hartnett 2000).

Populations of non-native plants and animals need to be controlled, and it 

is important that control efforts are specific to these species. Application 

of more generic treatments such as rotenone, or broad-spectrum herbicides, 

can have deleterious effects on spring biodiversity and ecosystem functioning 

(Sada et al. 2001; erman 2002). Methods that minimise impacts such as 

manual removal, targeting only a small portion of habitat during a single 

treatment, or confining natives where they are protected from treatment 

effects, are preferred (Sada et al. 2001). elimination of noxious weeds can 

be effectively achieved by a combination of mechanical methods and proper 

riparian management (i.e. providing shade) (Young et al. 1999), without the 

extirpation of other native flora.

Finally, education programmes can assist in improving community understanding 

of the relationship between land uses and the quality and quantity of spring 

water. Thus, a coordinated educational programme, employing a range of 

educational materials (e.g. brochures, pamphlets, booklets, slide exhibitions, 

videotapes, school field trips or regional and international conferences) will 

help to communicate this understanding and facilitate spring ecosystem 

protection (Laukoetter et al. 1992; Hartnett 2000).

Habitat restoration is an important aspect of managing spring resources, 

although it may take lower priority than protection of unmodified springs, 

where these unmodified habitats are under threat and contain significant 

biodiversity values. Restoration may include removal of barriers between 

groundwater, spring and springbrook, including man-made structures such as 

pipes, troughs, spring boxes or dams for impoundments, all of which impede 

the natural movement of water. Restoration may also include active transfer 
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of fauna or flora from one spring to another, although it does create risks 

for genetic diversity (erman 2002), particularly for groups with high levels 

of local endemicity (e.g. hydrobiid snails). Such threats to genetic diversity 

can be minimised by developing a detailed knowledge of the spring fauna 

and flora of the region (Sada et al. 2001). However, it would seem safer to 

favour natural recolonisation processes than to play an active role (Waechter 

& Ruether 1994; Glattfeld et al. 1996), except where natural recolonisation 

may be precluded by limited dispersal ability.

 6 . 4  P R O T e C T I O N  O F  N e W  Z e A L A N D ’ S  C O L D W A T e R 
S P R I N G S

Many of New Zealand’s largest springs are afforded some level of protection 

because they are part of the conservation estate (e.g. Waikoropupu Springs; 

Ohinepango Springs), or through their use for public water supply (e.g. 

Hamurana Springs). However, large springs are rare features in the landscape, 

and most springs are small and inconspicuous.

Based on springs’ distributional density, their poor representation in the 

conservation estate and their high potential for anthropogenic disturbance 

through water abstraction and land-use intensification, we suggest that 

small, lowland springs are most at risk of degradation and further loss of 

biodiversity. Many of these small lowland springs are already impacted, and 

active rehabilitation and restoration will be required. However, many of these 

springs will also be located on private land, so their protection will be very 

dependent on the motivation of the landowner. education of landowners on 

the values and services provided by intact, functioning springs will play an 

important role in protection or restoration of these systems.

We have identified three major spring types based on their underlying geology 

which may provide a useful basis for determining management approaches 

to the conservation and protection of spring biodiversity. These are: 

Karst springs—These exhibit a relatively high degree of permanence, 
although their discharge may be variable. Throughout New Zealand, but 
especially in Northwest Nelson, karst springs are a centre of hydrobiid 

snail and amphipod diversity. The high levels of local endemism observed 
in karst springs suggest that they may require management at relatively 
small spatial scales. For example, protection of individual springs will 
be required where maintainance of local endemics is a management 
priority.

Volcanic springs—These are a major feature of the North Island, particularly 

around the Central Plateau and Mt Taranaki. volcanic springs tend to have 

relatively high permanence and flow stability, but their history of large-

scale disturbance tends to reduce their biodiversity values, and spring 

assemblages tend to be dominated by vagile insect taxa. Management of 

such springs should focus on protection of representative spring habitats 

within particular biogeographic regions.

Alluvial springs—These tend to be concentrated in intensively farmed, 

lowland areas, especially in Canterbury and Southland. These springs 

are at risk from groundwater abstraction, river management and habitat 

•

•

•
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destruction. Management of alluvial springs should be intimately linked 

with groundwater management, so that spring flows and groundwater 

quality are maintained at the aquifer scale. Protection and rehabilitation 

of springs may also be required at the local scale, so that representative 

habitats are maintained within the landscape.

The key to the protection of small springs is to raise awareness of the 

values associated with spring habitats, so that landowners see them as 

valued landscape features. Raising awareness should be a deliberate, but 

gradual process. Organisations such as the Qe II National Trust will have 

an important role to play. The Trust facilitates the protection of habitats of 

significant natural values on private lands. At present the Trust’s database 

of covenants includes c. 350 wetlands, many of which will include springs 

(R. Allibone, Qe II National Trust, 2005, pers. comm.).

Regional council activities will also be crucial to raising public awareness of 

the values associated with springs. examples include work on the ecology 

of spring-fed systems in the Wairau River valley (e.g. Young et al. 2002), 

the extensive spring database produced by eCAN, and recent work detailing 

sustainable management of water resources of the Ruataniwha Plains (HBRC 

2004).

 7. Conclusions and future directions

Springs occur at the interface of groundwater, surface water and terrestrial 

ecosystems. As ecotone habitats, they are characterised by sharp gradients 

in physico-chemical characteristics (e.g. dissolved gases, temperature), 

but their defining characteristics (thermal and hydrological stability) are 

controlled by the hydrogeological context of their parent aquifer. Spring 

size, permanence, water quality and substrate type are all controlled by 

aquifer hydrogeology.

Springs throughout New Zealand contain a diverse fauna and flora. There is 

a significant spring specialist fauna, which includes a significant diversity of 

spring snails (Hydrobiidae), isopods of the family Phreatoicidae, amphipods of 

the family Paraleptamphopiidae, and a number of insect taxa (e.g. the mayfly 

Zephlebia nebulosa, the cased-caddis Pseudoeconesus spp.). The hydrobiid 

snail fauna of springs is of particular importance, as New Zealand is a 

significant hotspot of hydrobiid diversity. The high levels of local endemism 

observed in spring snails and amphipods indicate that springs are important 

centres of genetic diversity and radiation for poorly-dispersing taxa. At 

the regional level, Northwest Nelson and Southland appear to be hotspots 

for spring biodiversity. In braided river catchments, springs provide stable 

habitats in otherwise harsh aquatic environments. As a result, springs and 

the brooks they feed are important centres of biodiversity for both algae and 

invertebrates in these landscapes. Overall, the biodiversity values associated 

with New Zealand coldwater springs dictate that protection is required, 

particularly to halt the decline in indigenous biodiversity, and protect a full 

range of aquatic habitats.
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Spring community structure is controlled, first and foremost, by spring 

permanence. In permanent springs, community structure varies with geology, 

elevation and disturbance history. Research on the Waimakariri River indicates 

that successional stage (which is determined by vegetation types and reflects 

time since disturbance) is a key factor influencing community structure in 

braided river catchments, although the presence/absence of macrophytes is 

important at local scales. At a range of spatial scales we have found that 

catchment land use and riparian vegetation composition are significant factors 

associated with spring invertebrate biodiversity patterns. Springs shaded by 

native vegetation have greater relative abundance of mayflies and stoneflies, 

and stock access appears to act as an additional, or cumulative source of 

disturbance. In general, lowland springs in pastoral landscapes with unlimited 

stock access can be expected to have reduced biodiversity values, although 

local factors, such as substrate composition, may mitigate impacts.

The key anthropogenic threats to the biodiversity values of New Zealand’s 

coldwater springs are the unsustainable use of groundwaters through over-

pumping, or chemical contamination, and the destruction of spring habitats 

through vegetation clearance and stock trampling. At the local scale, we 

suggest that spring protection on private land might be easily achievable, 

given sufficient landowner motivation, because springs are generally of small 

size, and their protection can provide a number of additional benefits to 

the landowner (e.g. water supply, nutrient trapping). At the regional scale, 

protection of the underlying aquifers to maintain spring flows constitutes a 

more difficult process, particularly in groundwater-dependent regions such 

as Canterbury and Hawke’s Bay.

The key steps to improving our management of springs include an effective 

mapping of spring resources, identification of biodiversity values and other 

services, provision of methods for assessing spring habitat quality and 

biological integrity, definition of management goals for springs within different 

hydrogeological and land-use settings, monitoring to assess management 

effectiveness, public education and the provision of information on effective 

approaches for spring restoration or rehabilitation in degraded landscapes.

 7 . 1  K e Y  K N O W L e D G e  G A P S

Based on our review of available knowledge pertaining to New Zealand 

springs, we have identified a number of knowledge gaps that should be 

addressed in future studies. These are:

Spring classification—There is a pressing need to recognise groundwater-

dependent ecosystems (GDes), such as springs, within national freshwaters 

classifications systems (e.g. River environment Classification, ReC).  

At present the ReC system does mention spring-fed sources of flow, 

but these must be user defined. We recommend that efforts be made 

to include groundwater dependence within the GIS framework of the 

Source of Flow class of the ReC. This should enhance our ability to map 

and better manage springs and spring-fed systems. The springs database 

developed during this programme may provide a useful starting point for 

inclusion of a springs GIS layer within the ReC.

•
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Identification tools—Recent detailed biosystematics research has identified 

a huge diversity of spring fauna, particularly within the Hydrobiidae 

(Mollusca) and Paraleptamphopiidae (Amphipoda). Much of this detailed 

knowledge is relatively inaccessible to ecologists and managers, because 

of the highly specialised nature of species identification in these groups. 

Provision of identification tools even to genus level would help ecologists 

increase the taxonomic resolution of their spring research projects and 

more clearly identify biodiversity hotspots.

Springs as refugia—Several authors have suggested a refugial role for 

springs in the landscape (e.g. Mosley 1983; van everdingen 1991). We 

suggest that springs may provide significant thermal refugia for native 

fish and invertebrates in some regions of New Zealand. This is probably 

most likely to occur in alluvial springs in lowland areas of New Zealand 

(e.g. Canterbury Plains and Ruataniwha Plains, southern Hawke’s Bay), 

where river temperatures can exceed critical temperatures for key stream 

invertebrates. Research testing this hypothesis may help increase the 

profile of springs, and increase public perceptions of their value.

Restoration ecology of springs—To our knowledge, no work has tracked 

spring restoration in New Zealand. In addition to the obvious management 

need for information on restoration processes, research on the restoration of 

springs would provide a test of the importance of dispersal characteristics 

in determining spring recolonisation dynamics. For example, in alluvial 

springs, the importance of groundwater as a pathway for dispersal could 

be tested—i.e. does the aquifer represent a continuous, navigable habitat 

or are organisms restricted in their movement by phreatic dispersal 

barriers or contemporary anthropogenic impacts.

River management effects on springs—Recent preliminary work on the 

occurrence of springs within braided river systems has shown that flow 

regulation, channelisation and flood protection works can have severe 

impacts on flood-plain habitat heterogeneity. We suggest that further 

research is required to identify linkages between biocomplexity in 

braided rivers and large-scale human interventions in flow and habitat 

characteristics.

Development of methods to measure spring habitat quality and biotic 

integrity—Such methods will be required for biomonitoring of springs. 

Closely aligned to this would be work to assess the use of spring 

fauna as indicators of sustainable use of groundwaters, both in terms of 

groundwater quantity (i.e. spring permanence) and quality (i.e. spring 

fauna as indicators of contamination).

•

•

•

•

•
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  Appendix 1

  A L G A L  A N D  M A C R O P H Y T e  T A X A  F O U N D  I N  A 
S U R v e Y  O F  F I v e  C O L D W A T e R  S P R I N G S

This survey was carried out by F.B. Michaelis in 1974. Presence of a 

species is denoted by ‘x’. ‘*’ indicates introduced vascular plants. Sites are:  

A = Hamurana Springs (Rotorua), B = Lake Hayes spring (Queenstown), 

C = Otangaroa Springs (Putaruru), D = Three Springs (Fairlie), e = Waikoropupu 

Springs (Takaka), and F = Western Springs (Auckland). 

 A B C D e F

Diatoms      

Achnanthes spp.     x 

Cocconeis spp.     x x

Cymbella spp.     x 

Fragilaria spp.      x

Gomphonema spp.     x x

Navicula spp.     x x

Synedra spp.     x x

Cyanobacteria      

Entophysalis rivularis     x 

Nostoc parmeloides     x 

Nostoc verrucosum     x 

Microcoleus?     x 

Oscillatoria?     x 

Filamentous	green	algae      

Ulothrix zonata      x

Stigeoclonium spp.      x

Chlorophyta      

Chaetophora elegans     x 

Spirogyra spp.     x x

Chrysophyta      

Vaucheria spp.     x x

Rhodophyta      

Batrachospermum sp.     x 

Hildenbrandia rivularis     x 

Mosses

Acrocladium cuspidatum     x 

Bryum blandum     x 

Calliergonella cuspidata     x 

Cratoneuropsis relaxa    x x 

Cyatophorum bulbosum     x 

Drepanocladus aduncus     x 

Drepanocladus fontinaliopsis      x

Echinodium hispidum     x 

Fissidens rigidulus  x   x 

Hypnobartlettia fontana     x 

Hypopterygium filiculaeforme     x 

Thamnium pandum x     

Thiudiopsis furfurosa x     

Continued on next page
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 A B C D e F

Liverworts

Chiloscyphus austrigenus     x 

Lophocolea austrigena     x 

Lophocolea minor     x 

Neesioscyphus phoenicorhizus     x 

Radula sp.     x 

Riccardia sp. x     

Ricciocarpus natans      x

Vascular	plants      

Callitriche stagnalis x  x  x x

*Elodea spp.      x

*Egeria spp.      x

*Juncus microcephalus     x 

*Lagarosiphon major x  x   

Lemna minor  x x  x 

Myriophyllum elatinoides     x x

Myriophyllum porpinquum x     

*Nasturtium officinale x x x x  

Potamogeton spp. x     x

*Salvinia spp.      x

Appendix 1 continued.



What are the biodiversity values of coldwater springs?

Coldwater springs are formed when the water table intersects with 
the earth’s surface, or groundwater rises to the surface through rock 
faults, fractures or depressions. Springs are a significant component 
of the New Zealand landscape, yet they have received little attention 
from freshwater ecologists and conservation managers. Recently, 
a major research effort has been directed towards understanding 
the invertebrate biodiversity values of coldwater springs. This 
report summarises the state of our knowledge regarding the ecology 
of New Zealand springs, and identifies the approaches that are 
required to manage, protect and rehabilitate springs.

Scarsbrook, M.; Barquín, J.; Gray, D. 2007: New Zealand coldwater springs and their 
biodiversity. Science for Conservation 278. 72 p.
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