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A B S T R A C T

The impact of sterilisation and culling control of stoat (Mustela erminea)

populations was evaluated using models of increasing complexity. The first was

a simple logistic model with continuous births and deaths; the second included

a more realistic birth pulse rather than continuous births; and the third included

a birth pulse and age structure. For beech forest (Nothofagus spp.) habitats, the

birth pulse models distinguished between mast, crash and normal years, each

year having a different intrinsic rate of increase, r
m
, which was parameterised

from trap-catch indices. The second model best predicted the large variation in

stoat abundance observed in beech forest. Using this model, little difference

was predicted in the proportional reduction of stoat density under culling or

sterilisation control. Under continuous control, sterilisation was slightly more

effective at reducing peak (summer) stoat density; however under pulsed

control, culling was marginally more effective than sterilisation. Control of

either kind was much more effective against populations in non-beech forests

than against those in beech forests, essentially because of the former

population’s lower r
m
 value. The second birth pulse model was also used to

predict the likely dynamics of canine distemper virus (CDV) in stoat

populations. CDV was not predicted to persist as an endemic disease in

New Zealand stoat populations. This was primarily due to the birth pulse

structure which precluded the continuous recruitment of susceptible

individuals required to maintain the disease within a host population.
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1. Introduction

Stoats (Mustela erminea L.) were introduced to New Zealand in the late 1800s

to control rabbits. They spread rapidly to forests and now represent both the

most widespread mustelid species and the most significant predator of a

number of New Zealand’s most threatened bird species. Stoat control will have

to be ongoing if some endemic species like kaka (Nestor meridionalis) and kiwi

(Apteryx spp.) are to survive on the mainland (McLennan et al. 1996; Wilson et

al. 1998). To date, control has relied on labour-intensive trapping, but a 5-year

research programme was instigated in 2000 by the Department of Conservation

(DOC) to improve both short-term and long-term control, in the first case by

developing more effective baits, lures and traps, and in the second by exploring

higher-risk options such as fertility control and biological control (Murphy &

Fechney 2003).

It is timely to question the likely efficacy of different control options in ecologi-

cal terms, should the technology be capable of delivering them. Population mod-

els have been developed to help answer these questions. Three models are used,

of progressive complexity and realism. The first and simplest is a single-species

logistic model, in which births and deaths are assumed to be continuous. This

allows simple but approximate analytical solutions for the long-term impacts of

controls like sterilisation and culling. The second model is a more realistic birth

pulse model, in which all rates, including controls like culling or sterilisation, are

continuous except births, which occur as discrete events once a year. This more

realistic model provides estimates for the transient impacts of culling and sterili-

sation over time following the start of control, as well as more refined estimates

of the long-term effects. In particular, for beech forest habitats (Nothofagus

spp.) it distinguishes mast years and the years immediately following mast years

(‘crash years’) from other ‘normal’ years, each having different stoat parameters.

Mast events occur every 3–5 years (Wardle 1984), and the associated irruptions

of birds, mice and invertebrates provide a sudden increase in food resulting in a

density-independent change in stoat vital rates (King 1983; King et al. 2003). The

third model is a birth pulse one with age structure, the main aim of which is to

validate the simpler, non-age-structured model. In all cases the models are habi-

tat-specific, involving populations in both podocarp/broadleaf and beech for-

ests. The primary data source is trapping records over periods of up to 5 years in

a variety of habitats. Stoat populations were simulated using the above three

models to answer the question: is sterilisation likely to be a superior method to

culling for control for stoat populations?

Canine distemper virus (CDV) has been identified as a possible biological

control agent for stoats (O’Keefe 1995; Norbury 2000) and a vaccine strain of

CDV is currently being prepared to investigate the lethality and transmissibility

of these strains in stoats and ferrets (Murphy & Fechney 2003). Mustelidae are

known to be particularly susceptible to CDV (Appel 1987) but there has only

been one case of CDV-associated death reported for stoats in the literature

(Kymer & Epps 1969), so the understanding of CDV epidemiology in stoats is

negligible. Epidemics in other carnivore populations are characterised by rapid

disease dynamics and high mortality rates of affected individuals (Appel &
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Summers 1995). An outbreak of CDV in black-footed ferrets (Mustela nigripes)

eliminated the only known wild population of this species (Williams et al.

1988). Large reductions in local populations caused by CDV epidemics have

also been recorded for lions (Panthera leo; Roelke-Parker et al. 1996), Caspian

seals (Phoca caspica; Kennedy et al. 2000), African wild dogs (Lycaon pictus;

MacDonald et al. 1992), and raccoon dogs (Nyctereutes procyonoides; Machida

et al. 1993). We used a birth pulse model with masting events (Model 2) as the

basis for a disease/host model of the Anderson/May type (Anderson & May

1981) to predict the likely dynamics of canine distemper virus (CDV) in stoat

populations in New Zealand beech forest. Whilst this exercise was purely

exploratory, there being no data on the pathology or epidemiology of CDV in

stoats, it is anticipated that the models will be improved when parameter

estimates become available and that they will also be used as the basis to

evaluate other pathogens as potential biocontrol agents.

2. Models to compare stoat control
by culling versus steritisation

2 . 1 P O P U L A T I O N  M O D E L S

2.1.1 Model 1: logistic model

The model for culling is:

cN
K
NNr

dt
dN

−⎟
⎠
⎞

⎜
⎝
⎛ −= 1m Eqn 1

where dN/dt = rate of growth of the population, r
m
 = intrinsic rate of increase,

K = equilibrium density or carrying capacity, c = instantaneous culling rate and

N = the current population density. There is no evidence for density-dependent

processes controlling fertility in stoats (McDonald & Larivière 2001). However,

Powell & King (1997) did find a significant negative relationship between first-

year survivorship and stoat density in New Zealand beech forest suggesting

density dependence in mortality rates. Assuming it is the mortality rather than

the birth rate that is density-dependent, for sterilisation the model becomes

(Barlow et al. 1997):

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −−−=

K
NrdQbN

dt
dN m1 Eqn 2a

( )( )bQsQ
dt
dQ

−−= 1 Eqn 2b

where b = instantaneous birth rate, Q = proportion of sterile females, d =

density-independent instantaneous death rate, s = instantaneous sterilisation

rate and dQ/dt = rate of change of the proportion of sterile females. Note that r
m

= b – d. The derivation of equation 2b is given in Barlow et al. (1997), it

represents a situation in which mating is polygamous and either females alone
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or both sexes are sterilised, or a monogamous or harem mating system where

either sex alone is sterilised. In all of these cases, the proportion of females not

reproducing corresponds exactly or approximately to the probability of

sterilisation, whichever sex this applies to. Here, we have assumed that it is the

female stoats that are sterilised, but like all the other instantaneous rates, the

sterilisation rate is expressed as a per capita rate. Other assumptions of the

model are that sterilisation is lifelong, that sterilised females have the same

mortality rates as fertile females and that all young are born fertile.

By setting dN/dt and dQ/dt to zero in equations 1 and 2 and solving for N*/K

(where  N*/K are equilibrium densities with, and without control,

respectively), the final, equilibrium reductions in population size can be

predicted for various intensities of control, as indicated in Table 1.

TABLE 1 .  RELATIONSHIPS  BETWEEN PROPORTIONAL REDUCTION IN

POPULATION DENSITY (p ) ,  ASSUMING POLYGAMOUS MATING.

Where p = 1 – N*/K and N* and K are equilibrium densities with and without control

respectively,  c is the instantaneous rate of culling, s is the instantaneous rate of sterilisation, and

Q is the proportion of females sterilised.

VARIABLE ESTIMATE

Proportional reduction (p) given c c/rm

Proportional reduction (p) given s s/rm

Proportion sterilised (Q) given s s/b

Proportional reduction (p) given Q bQ/rm

Q for eradication (p = 1) rm/b

Sterilisation rate (s) to give proportional reduction p rmp

Level (Q) to give proportional reduction p rmp/b

Stoat population parameters are: b = instantaneous birth rate, rm = intrinsic rate of increase.

Modified from Barlow et al. (1997).

2.1.2 Model 2: birth pulse model

This model included death rate, sterilisation and culling in continuous time, and

births of fertile females as a discrete yearly event, thus:

⎟
⎠
⎞

⎜
⎝
⎛ −−−= c

K
NrdN

dt
dN m

Eqn 3a

( )Qs
dt
dQ

−= 1 Eqn 3b

and at the birth pulse

( )( )PQNN −+=′ 11 Eqn 3c

( )PQ
QQ
−+

=′
11 Eqn 3d

where N and Q are the values before the pulse, N’ and Q’ are the new values after

the pulse, and P is the productivity or the number of female offspring produced

per female per birth pulse. Results for culling and sterilising at different rates

were obtained by simulation, comparing equilibrium densities without control
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with equilibrium densities in the presence of control and with the rate at which

populations declined following the start of control. For beech forests the model

was run with a repeated sequence of 4 years corresponding to a mast year, a crash

year and two normal years, using the parameters appropriate to each year type.

Simulation used a weekly (1/52 year) time step and Euler integration. In the birth

pulse models, ‘births’ take place at the time young stoats become independent

from their mother. Hence reference to the ‘birth pulse’ is actually describing the

large pulse in juvenile recruitment to the stoat population in December/January

when young stoats disperse from their natal den.

2.1.3 Model 3: age-structured model

This model operated in the same way as Model 2, but juveniles aged 0–1 years

were kept separate after the birth pulse and merged with adults at the next birth

pulse. Adult survival was assumed to be density-independent but juvenile

survival to be density-dependent based on data from the literature. In this

respect the model differed from the previous two, in that virtually all the

parameters were estimated from the literature rather than from the regressions

of r against N
t
.

2 . 2 P A R A M E T E R S  F O R  P O P U L A T I O N  M O D E L S

The available data on stoat trap catches over more than one year were collated

and analysed, for both beech and non-beech habitats. All data were converted to

a common index of stoats caught per 100 trap nights, in several cases corrected

for sprung traps but in the majority of cases uncorrected (see Appendix 1). The

data were then analysed by regressing the exponential rate of increase (r =

ln(N
t+1

/N
t
))1 on the first year’s density index, N

t
, for beech and non-beech

habitats separately, then the data for beech were divided into mast years, ‘crash

years’ immediately following mast years, and other years and analysed by

stepwise multiple regression with dummy intercepts and slopes for mast years

and crash years. For example, the dummy intercept for mast years took the

value 0 for all other years and 1 for data corresponding to mast years. The

variable would not be selected if there was no significant difference in

intercepts, but if there were, the coefficient of the dummy represents an

addition to the intercept for that set of data, namely mast years. Dummy slope

variables were the dummy intercept (0 or 1) multiplied by N
t
; if significant, they

represented an addition to the slope for the appropriate data set. In all cases the

density indices represented maximum values per year (i.e. based on peak trap

catches, generally in summer/early autumn) and, therefore, included the new

recruits for that year.

For the birth pulse model, the intrinsic rate of increase, r
m
, was partitioned into

birth and death rates using additional data from the literature, and for the  age-

structured model, death rate was further divided into adult death rate and

density-dependent juvenile death rate, again using values from the literature

(Powell & King 1997).

1  ln = natural log, loge
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The regressions were:

Beech: r = ln(N
t+1

/N
t
) = 0.60 – 0.27N

t
 + 0.79 D

1
 – 0.99D

2

P = 0.001 P = 0.037 P = 0.013

R2 = 0.70; F = 19.1; df = 3,20; P = 0.001

where D
1
 is the dummy intercept for mast years and D

2
 that for crash years. This

regression (Fig. 1) gave a slightly higher R2 value than one with the dummy

intercept for mast years but a dummy slope for crash years. The overall

relationship for beech forests, irrespective of year, is:

Beech overall: r = 0.87 – 0.38 N
t

R2 = 0.44; F = 19.3; df = 1,22; P < 0.001

Non-beech: r = 0.23 – 0.79N
t

R2 = 0.18; F = 5.5; df = 1,19; P = 0.03

This relationship is shown in Fig. 2. All the above relationships are summarised

in Table 2, and yield the basic population parameters r
m
 and K in Table 3. The

intrinsic rate of increase, r
m
, is the maximum value of r (i.e. the regression

intercept, corresponding to N
t
 = 0) and the carrying capacity or equilibrium

density, K, is the value of N
t
 which makes r = 0. This is the intercept divided by

the slope.

TABLE 2 .  RELATIONSHIP BETWEEN THE INTRINSIC RATE OF INCREASE (r )  AND

STOAT DENSITY (Nt) ,  AS  DETERMINED BY LINEAR REGRESSION*  AND USING

CATCHES PER 100 TRAP-NIGHTS FROM APPENDIX 1  AS  DENSITY INDICES.

FOREST/YEAR TYPE DENSITY RELATIONSHIP

Beech, overall r = 0.87 – 0.38 Nt

Beech, mast r = 1.39 – 0.27 Nt

Beech, normal r = 0.60 – 0.27 Nt

Beech, crash r = –0.39 – 0.27 Nt

Non-beech r = 0.23 – 0.79 Nt

* Shown in Figs 1 and 2.
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 (r
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Figure 1. The relationship
between stoat rate of

increase/year (r = ln(N
t+1

/N
t
)

and current year’s density
index (N

t
, number caught/

100 trap nights), for beech
forest habitats. Solid line =

normal year (r = 0.60 –
0.27N

t
), dashed line = mast

year (r = 1.39 – 0.27N
t
),

dotted line = ‘crash year’
following a mast year (r =

–0.39 – 0.27N
t
). See Section

2.2 for regression statistics.
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The linear regression method used to estimate the intrinsic rate of increase and

the strength of density dependence acting on the rate of increase is somewhat

simplistic and statistically dubious (McCallum 2000). However, given the lack

of data on fecundity and mortality rates in relation to population density, it was

the only method available. Process error due to the effects of habitat and mast

seeding on the population growth rate was minimised by including these

variables in the regressions, but it can be seen from Fig. 2 and from the low R2

statistic (= 0.18) for the depicted relationship, that there is still a lot of

unexplained variation in population growth rates in non-beech habitats. The

intrinsic rate of increase estimated for non-beech habitats (r
m
 = 0.23; 95% CI =

(–0.13, 0.59)) is thus not very robust, and perhaps the only meaningful

statement we can make is that the population rates of increase are generally

lower than those in beech habitats. In contrast, much of the variation in the rate

of increase in beech habitats was explained by population density (R2 = 0.70) if

dummy variables to account for the differing rates of increase in mast and crash

years were included. The data point corresponding to N
t
 = 9.3, r = –1.7 in Fig. 1

was identified as having high leverage. However, repeating the regression

analysis without this data point resulted in very similar regression constant and

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2

Stoat density (C/100TN)

R
at

e 
of

 in
cr

ea
se

 (r
)

Figure 2. The relationship
between stoat rate of

increase/year (r = ln(N
t+1

/N
t
)

and current year’s density
index (N

t
, number caught/

100 trap nights), for non-
beech forest habitats (r =
0.23 – 0.79N

t
; see Section

2.2 for regression statistics).

TABLE 3 .  POPULATION DATA FOR STOATS.

FOREST/YEAR rm b d K PRODUCT- ANNUAL DENSITY

TYPE IVITY SURVIVAL  COEFFICIENT

Beech, mast 1.39 1.72 0.33  5.15 4.60 0.72 –0.27

Beech normal 0.60 1.35 0.75  2.22 2.86 0.47 –0.27

Beech crash –0.39 0.36 0.75 –1.44 0.43 0.47 –0.27

Beech overall 0.87 1.48 0.61 2.29 3.40 0.54 –0.38

Non-beech 0.23 0.98 0.75  0.29 1.67 0.47 –0.79

rm = intrinsic rate of increase, b = instantaneous birth rate, d = minimum (density-independent) instantaneous death rate, K =

equilibrium density index (C/100TN), productivity = females/female/year, annual survival = finite survival rate/year, density

coefficient = the constant estimated for Nt in the regression of r against Nt.
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coefficient estimates to the original analysis (r = 0.62 – 0.29N
t
 + 0.81D

1
 –

0.93D
2
; R2 = 0.68, df = 3,19; P < 0.001), so we are reasonably confident in the

estimates of r
m
 based on the available data.

In Table 3, r
m
 was partitioned into birth and death rates as follows. Since

fecundity is determined in the year prior to giving birth, the mean number of

corpora lutea per female in a non-mast year was taken as the physiological

maximum productivity in a mast year and was 4.6 females/female/year (Powell

& King 1997). This productivity translates to an instantaneous birth rate of ln(1

+ productivity) = 1.72/yr. The density-independent death rate is calculated by

subtraction of r
m
 from the birth rate, which is 1.72 – 1.39 = 0.33/yr. For normal

years the death rate is estimated from the life table of Powell & King (1997:

table 8), which suggests an average survival rate of 0.47/yr over the first 3 years

of life, hence an instantaneous death rate of –ln(0.47) = 0.75/yr. The birth rate

is r
m
 plus the death rate, or 0.6 + 0.75 = 1.35/yr. Crash years are characterised

mainly by a reduction in birth rate, so death rate was assumed to remain the

same at 0.75 and the birth rate to be r
m
 plus the death rate or –0.39 + 0.75 =

0.36/yr. For the overall beech forest relationship, the death rate was assumed to

be the weighted average of those in a mast year, crash year and two normal

years ( = 0.61/yr), and the birth rate to be r
m
 plus the death rate (= 1.48/yr).

In non-beech forests the death rate was assumed to be the same as in normal

years in beech forests (0.75/yr), giving a birth rate of 0.23 + 0.75 = 0.98/yr. The

productivities and yearly survival rates in Table 3 are calculated from the

instantaneous rates (productivity = exp[birth rate] –1, and survival = exp[–

death rate]). K values in the birth pulse model (Model 2) were adjusted

downwards (× 0.6 in beech forests, × 0.69 in non-beech forests) to reflect the

fact that they were based on peak numbers but applied in the model over the

whole year, covering the peak and subsequent decline; the scaling factors were

chosen to give simulated peaks equal to observed K values.

Unlike Models 1 and 2, the age-structured model used independent data from

the literature rather than the regressions of r on N
t
; this includes the density-

dependence. Adult survival rate was assumed to be 0.55/yr (Powell & King

1997: table 8) and juvenile survival to be density-dependent based on Powell &

King (1997: fig. 8). Appendix 2 reproduces the data from Powell & King (1997),

and regression of log-transformed survival rates against stoat density gave the

linear relationship:

ln(survival) = –0.82 – 0.65 N
t

R2 = 0.71; F = 20.4; df = 1,7; P = 0.003

which translated to:

1st year survival = 0.44 exp (–0.65 N
t
)

where N
t
 is the density of stoats during the birth summer of the juveniles. This

was implemented in the model by assuming that juvenile survival followed this

relationship in summer but was 100% during the rest of the year. The relevant

value of N
t
 was taken to be the mean density to date during summer.

The above data relate to the models as follows. The simple logistic model used

the regression relationships for beech forest (overall) and non-beech forest, as

in Table 2, together with the birth and death rates for the overall beech forest

and non-beech forest habitats in Table 3. For the birth pulse model, the beech
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forest data were those for specific years (Table 3), which were applied in a

repeated sequence of mast, crash and two normal years. The age-structured

model used these same parameters plus the separate values for adult survival

and juvenile density-dependent survival, and was applied only to beech forest.

2 . 3 R E S U L T S  F R O M  P O P U L A T I O N  M O D E L S

2.3.1 Model 1: effects of culling and sterilisation

The general results for effects of culling and sterilisation, given Model 1, the

simple logistic, are shown in Table 1. Applied to stoats, the key results are:

Proportional reduction in density (p); p = c/r
m
 = 1.15c (beech) and 4.35c

(non-beech)

Proportional reduction in density (p); p = s/r
m
 = 1.15s (beech) and 4.35s

(non-beech)

Proportion of females sterilised (Q); Q = s/b = 0.68s (beech) and 1.02s (non-

beech)

where c and s are the instantaneous sterilisation or culling rates. For practical

purposes, and given that most control methods are applied on a continuous

basis, it is more useful to consider control in terms of percent of the population

culled or sterilised per month. This monthly rate (e.g. the proportion culled per

month) is given by:

Proportion culled per month = 1 – exp(–c/12)

and the same applies to sterilisation rates. Expressing control in these terms,

the relationships are approximately linear and are summarised as follows:

p = 14 × proportion culled or sterilised per month (beech forest)

p = 52 × proportion culled or sterilised per month (non-beech forest)

Q = 8 × proportion sterilised per month (beech forest)

Q = 12 × proportion sterilised per month (non-beech forest)

p = 1.7 × Q (beech forest)

p = 4.3 × Q (non-beech forest)

As these results show, the long-term reduction in equilibrium population

density gained from sterilisation is the same as that from culling, if control is

applied at the same rate (e.g. the same level of effective baiting or the same

proportion of the population sterilised per month by baiting as is killed by

trapping). Given the uncertainty in the estimate of r
m
 for non-beech habitats it

is best not to place too much confidence in the quantitative predictions of the

model for this habitat type. However if we accept that r
m
 is probably lower in

non-beech compared with beech habitats, then control of either kind is much

more effective against populations in non-beech forests than against those in

beech forests, essentially because of this lower capacity for increase. In terms

of sterilisation, the difference is because a given proportion of sterile females

translates to a greater reduction in population density; the effort required to

generate this proportion of sterile females, in terms of sterilisation rate per

month, is slightly higher in beech habitats.

From the above relationships, culling or sterilising at a rate of 0.07/month in

beech forests or 0.02/month in non-beech forests would, theoretically,
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eradicate a closed population of stoats. Whether or not eradication is possible

in practice, the models suggest quite modest rates of removal or sterilisation

have significant impacts on closed populations.

2.3.2 Model 1 v. Model 2: effects of birth pulse

Including a birth pulse (Model 2), rather than continuous births (Model 1),

resulted in sterilisation being slightly more effective than culling at reducing

peak (summer) stoat densities in (Fig. 3). This was because the effects of

sterilisation are realised in summer, at the birth pulse, whereas the effects of

culling occur continuously throughout the year. Therefore, for the same

control rate, sterilisation is more effective than culling at reducing densities in

summer, but as the year progresses, the additional constant mortality imposed

by culling means that culling reduces winter and spring densities more, relative

to sterilisation. Including a birth pulse introduced non-linearity in the

relationship between the proportional reduction in host density and the control

rate (Fig. 3). This was because there is a linear relationship between r
m
, the

intrinsic rate of increase (and hence the predicted population reduction) and

the instantaneous birth rate b when births are continuous (Model 1). However,

in the birth pulse model (Model 2) annual productivity was estimated as

exp(b) – 1, which means that r
m
 varied as ln(productivity) (Barlow et al. 1997).

2.3.3 Model 2: effects of beech mast cycle

The trends in stoat numbers during a beech mast cycle predicted by Model 2, in

the absence of control, are shown in Fig. 4. The model appears to mimic the

large variation in stoat densities observed in the field reasonably well, including

the approximately four-fold difference in stoat densities between mast and

crash years. The effect of including a beech mast cycle in Model 2 was to

decrease the average predicted population density for a given level of control
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(Fig. 3). This was because the intrinsic rates of increase, r
m
, over the mast cycle

were generally lower (except in a mast year) than those used in the overall

model (Table 4). Since the proportional reduction in density at a given control

rate varies negatively with r
m
, a lower r

m
 results in lower population densities

for a given continuous control rate. Sterilisation was slightly better than culling

at reducing the summer peaks due to the birth pulse as discussed in Section

2.3.2 (Fig. 3), and this difference was more marked in a mast year when fertility

was very high. However, continuous culling led to a more rapid reduction in

stoat densities than did continuous sterilisation at the same rate (Fig. 5). This

was because, with culling, individuals are instantly removed from the

population but the effects of sterilisation are not realised until the following

birth pulse. However, the difference in the rate of population decline between

culling and sterilisation was not large, due to the relatively high intrinsic rate of

increase of stoats (Barlow et al. 1997).
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2.3.4 Model 2: levels of control required to achieve specific
population reductions

To cause a 50% reduction in mast year densities, the control rate had to be

0.021/month through culling or 0.018/month through sterilisation. To achieve

an 80% reduction in mast year densities, the control rate had to be 0.034/month

through culling or 0.031/month through sterilisation. Assuming control began

in a mast year then the time taken for stoat densities to decline by 50% was the

same under both culling and sterilisation and was the length of two mast cycles,

approximately 8 years. Under the higher control rates the time taken for stoat

densities to be reduced by 80% was three mast cycles or approximately 12

years. If control ceased, then the time taken for the stoat population to recover

to pre-control levels depends on the level of control achieved. Thus for 50%

reduction, recovery to pre-control peak densities took only one mast cycle. For

an 80% reduction, the predicted recovery time was two mast cycles.

Populations that were under sterilisation control took a little longer to recover

than those that were culled, due to some sterilised females remaining in the

population, but this difference was small and less than a year. In these

population models, recovery is due to local recruitment only, the effects of

immigration are not included.

2.3.5 Model 3: effects of age structure

King (1983) reported that for the Eglinton Valley in Fiordland the majority (85–

92%) of the stoats trapped in a mast year were young born that season, but in a

crash year this percentage is much lower (32%). The age structure of the

summer stoat populations predicted by Model 3 was similar to that observed in

the field, namely 82% young in a mast year and 30% in a crash year. However,

the predicted fluctuations in stoat abundance over the course of a mast cycle

were not as large in magnitude as those observed in the field (Fig. 4). This was

because the population’s capacity for increase under Model 3, as indicated by

the r
m
 values, was generally lower than that under Model 2 which did predict

TABLE 4 .  INTRINSIC RATES OF INCREASE (r m)  AND PREDICTED REDUCTIONS IN POPULATION DENSITY

UNDER CONTINUOUS CONTROL REGIMES USING THREE DIFFERENT MODELS FOR STOAT POPULATIONS IN

BEECH FORESTS.

PROPORTIONAL REDUCTION UNDER CONTROL REGIME (p):

CONTROLLING 0.02 OF CONTROLLING 0.04 OF

POPULATION/MONTH POPULATION/MONTH

rm CULLING STERILISATION CULLING STERILISATION

Model 1 0.87 0.28 0.28 0.56 0.56

Model 2a overall 0.87 0.31 0.38 0.60 0.68

Model 2b with mast cycle 0.60, 1.39M, –0.39C, 0.60 0.48 0.53 0.92 0.94

Model 3 0.57, 0.94M, –0.44C, 0.68 0.65 0.67 1.00 1.00

Proportional reduction levels (p) are estimated as p = 1 – N*/K where N* and K are equilibrium densities with and without control

respectively. Estimates of N* and K for the models that include a mast cycle (models 2b and 3) were calculated from the average stoat

abundance over the 4 years of the mast cycle. M = maximum rate of increase from a normal to mast year, C = maximum rate of increase

from mast to crash year.



17Science for Conservation 252

fluctuations in stoat abundance adequately (Table 4). These low rates of

increase were a result of the strong density-dependent juvenile mortality

assumed in the model. Low rates of increase meant that the predicted levels of

control achieved by culling or sterilisation were higher than those predicted by

Model 2 (Table 4), although sterilisation was still predicted to be slightly more

effective than culling at reducing summer stoat densities. Because Model 3 did

not adequately capture the changes in population abundance observed in the

field, the effects of different control regimes predicted by this model were not

explored any further.

2.3.6 Model 2: pulsed control

The control strategies discussed above assumed continuous culling or

sterilisation efforts throughout the year, but in the field continuous control is

difficult to sustain due to logistical and financial constraints. These results give

the outcomes of pulsed control strategies to illustrate the optimum time to

control within a year and within a mast cycle. A ‘pulse’ of control was simulated

as 3 months of continuous control in spring, summer, autumn or winter using

Model 2 with a mast cycle.

With annual pulsed control, culling in spring gave the highest reduction in

average summer densities, followed by a summer or winter cull equivalently.

Culling in autumn was the least effective, though the difference between

control then and control in spring was small. For example, if culling took place

at a rate of 0.20/pulse, stoat densities in a mast year were reduced by 39% and

44% for autumn and spring culls respectively. This difference was because

autumn stoat densities are still relatively high and thus there is the potential for

any removal by culling in autumn to be compensated for due to the strong

density-dependent mortality acting at this time. In contrast, in spring, densities

are low, so density-dependent mortality is minimal and the potential for

compensation is less. The level of control achieved under sterilisation was not

dependent on the timing of control because the effects of sterilisation were not

realised until the birth pulse, and the model assumed that mortality rates were

equal for sterilised and fertile stoats. For the same level of control, sterilisation

proved more effective than culling at reducing summer stoat densities as was

the case under continuous control. If stoats were controlled annually at a rate of

0.20/pulse, the model predicted a 53% reduction in mast stoat densities under

sterilisation (in any quarter) versus the 44% reduction predicted from culling in

spring.

If control was restricted to one pulse every 4 years then, not surprisingly, the

best time within the mast cycle to reduce the mast birth pulse was in a mast

year. Conversely, the worst year to control stoat populations was in a crash

year. With the increased time between pulses of control, culling became

slightly more effective than sterilisation at reducing mast year stoat densities.

This was because under annual pulsed control there were still some sterilised

animals left in the population from the previous year’s control effort which,

combined with the animals sterilised in the current year, enhanced control; but

if control was applied only once every 4 years there was no such cumulative

effect as all sterilised animals from the previous control effort had died.

However, this difference between sterilisation and culling in terms of the
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proportional reduction in stoat density was minimal: controlling at a rate of

0.20/pulse in the spring of a mast year gave a 22% reduction in stoat abundance

under culling and a 21% reduction under sterilisation. Controlling at a rate of

0.40/pulse in the spring of a mast year gave a 45% and 42% reduction in stoat

densities under culling and sterilisation respectively (Fig. 6). As depicted in

Fig. 6, substantial reductions in population density were difficult to achieve

under four-yearly pulsed control: the relationship between the proportional

reduction in density and the control rate was almost one to one so for a 100%

reduction in density, 90% of the population had to be removed at each pulse.

2 . 4 D I S C U S S I O N  O F  P O P U L A T I O N  M O D E L S

These simple population models have indicated that there is little difference in

the effectiveness of sterilisation, compared with culling, in reducing mast year

stoat populations if these controls are applied continuously at the same rate.

Sterilisation was marginally better at suppressing summer densities than culling

when control was applied continuously. This was because stoat density was

assessed in summer after the birth pulse when the effects of sterilisation from

the previous year had been realised. If control was pulsed every 4 years rather

than continuous, culling was marginally better than sterilisation at reducing

peak density because the proportion sterilised and hence the reduction in

fecundity was less than under continuous sterilisation due the loss of sterilised

individuals from the population from the previous sterilisation effort. The

parity of sterilisation and culling in suppressing stoat density is similar to the

findings of Barlow et al. (1997) which were based on a continuous logistic

model and their conclusions appear to hold true for birth pulse models and

when there is large year-to-year variation in vital rates. The faster rate of decline

in stoat density under culling compared with sterilisation was not as

pronounced as that predicted for possum (Trichosurus vulpecula) populations

(Barlow et al. 1997) because stoat populations have much higher death rates

than do possums (d = 0.7 v. d = 0.1), so the maximum rate of decline under

sterilisation (= –d) was greater for stoat populations and closer to the maximum

rate of decline under culling (c = 1) (Barlow et al. 1997).
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Given this predicted similarity in the effectiveness of culling and sterilisation,

the choice between control methods might boil down to technical or social

considerations. The models presented here were based on a non-disseminating

form of sterilisation, which in practice would probably be a bait-delivered

chemosterilant or immunocontraception. Hence, the cost and effort required to

deliver these baits would be similar to those for conventional toxic baits but

would also suffer the same problems such as patchy delivery and bait aversion

(Bomford 1990; Norbury 2000). The mode of sterilisation assumed in the

models was the disruption of implantation. The long period (9–10 months) of

delayed implantation in stoats represents a larger window of opportunity for

effecting female sterilisation than does the short period of oestrus and

fertilisation (< 1 month) (Norbury 2000). However, if sterilisation affected

fertilisation rather than implantation, we would expect sterilisation to be less

effective than culling at reducing summer stoat densities. This is because a

proportion of the young born each year would escape sterilisation (since they

are fertilised in the nest before weaning and possible exposure to a sterilant)

and thus the following year’s potential productivity would still be high.

Perhaps the most glaring omission of detail from these models, and one which

is likely to affect the relative effectiveness of culling compared with

sterilisation, is the lack of immigration into the populations. Because stoats are

often territorial, a sterilised female stoat maintaining her home range could

effectively reduce recruitment from both local and external sources, giving

sterilisation an advantage over culling, which leaves empty territories which are

quickly recolonised. Caughley et al. (1992) and White et al. (1997) suggested

that sterilisation could be compensated for by a change in the social structure of

the targeted population allowing subordinate females, that would not

otherwise breed, to have offspring. We would not expect this to happen in stoat

populations because almost all female stoats caught in the wild are fertilised

(King 1990), suggesting that total productivity will be linearly related to the

proportion of unsterilised females as was assumed in the model. Characterising

the correct social structure of the population under study is important, as

previous work has shown that the breeding system of the modelled species can

have a large influence on the predicted efficacy of sterilisation (Caughley et al.

1992; Barlow et al. 1997). Here, the breeding system assumed for the stoat

models was ‘Scenario 1’ of Barlow et al.’s (1997) classification system. This

covers polygamous mating where the females are sterilised and ‘harem’ systems

in which a number of females mate exclusively with each dominant male and

the females are sterilised. In spring, male stoats roam their extended home

ranges, mating with multiple females and no pair bonds are formed (King &

Murphy in press), so this assumption seems justified.

The results of this modelling exercise should be interpreted with some caution

because the data on which they were based are limited and there are no field

data available to validate the effects of sterilisation. The limitations of the

models are discussed below with a view to identifying the types of data required

to further refine the models and improve confidence in their predictions. The

first critical assumption was that trap catch indices represent absolute density,

i.e. that there is a linear relationship between captures per 100 trap nights and

true stoat density and that this relationship does not change over time.

Quantifying stoat abundance is notoriously difficult due to their low density,
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small body size, and large home ranges (McDonald & Harris 1999; King &

Murphy in press). The use of trap catch indices can lead to biases in estimates of

stoat abundance because trappability can vary with sex, age (McDonald & Harris

2002; King 2003), and with season (McDonald & Harris 2002). There is also

evidence that trap catch density indices underestimate stoat densities in

summer because prey is plentiful and stoats might be less attracted to traps at

this time of year (Alterio et al. 1999; King 2003). Assuming this underestimation

is constant from year to year and across different locations, this would mean

that the estimate of the strength of density dependence (the slope of the

regression of r vs N
t
) was larger than the true value, though the estimated value

of r
m
 would be the same. Conversely, if we take into account the fact that

trapping removes a certain proportion of the population, and assuming this

removal is simply an additional density-independent mortality, this would mean

that the strength of the density dependence would be estimated correctly but

the value of r
m
 would be underestimated. Criticism could also be levelled at the

method used to detect density dependence (r vs N
t
), which assumes a particular

form of density dependence (non-linear, with no delay) and is statistically

dubious. More sophisticated tests for density dependence are available (e.g.

Dennis & Taper 1994) but they require long time series (> 15 years) and are still

affected by measurement error. Furthermore, changes in abundance can

identify density relationships but will not reveal much about the mechanisms of

density dependence. Here, we have assumed that density dependence operates

on mortality because there is evidence that juvenile survival is negatively

correlated with total stoat density (Powell & King 1997). There is no evidence

for density dependence in fertility (McDonald & Larivière 2001), this being

primarily determined by food supply (Powell & King 1997). We agree with

McDonald & Larivière (2001) that much work needs to be done on identifying

the nature and strength of any density dependent mechanisms in stoat

populations. This is essential for improving the management of stoat

populations as compensatory responses can greatly modify the impact of

control.

Once control ceased, the recovery rates predicted by the model were slower

than those observed in the field (Griffiths 1999). This was because the models

assumed a closed population, with recovery dictated by the time until, and the

size of, the next birth pulse. In the field, empty stoat habitats are rapidly

recolonised by dispersing stoats. For example, Murphy & Dowding (1994)

found that an area in the Eglinton Valley was re-invaded within 2 months of

trapping being discontinued. More data is needed on stoat dispersal and

recolonisation rates, particularly in relation to area and resident stoat density

(Barlow & Choquenot 2002), so that more realistic, spatial models can be

developed to predict control outcomes in the presence of immigration.

Stoat populations in non-beech forests are generally more stable than those in

beech forests and attain densities similar to, or lower than, those in a beech

forest in a non-mast year (King & Murphy in press). However the causes of

population variation are not as obvious as in beech habitats and the data used to

parameterise the model showed only a weak relationship between the rate of

increase and population density, with considerable unexplained variation (R2
 
=

0.11). Because of this low predictability, the quantitative results of the non-

beech model are circumspect, although the greater efficacy of a given control
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rate in non-beech forest compared with a beech forest should hold because the

rates of increase in a non-beech forest rarely approach those in a beech forest in

a mast year.

The beech mast cycle and associated stoat population response to increased

prey density has been greatly simplified in the beech mast models. The effects

of periodic seedfall on ecological communities are very complex (Ostfeld et al.

1996) and it would be naïve to assume that we have encapsulated the indirect

numerical response of stoats to mast seeding within a 4-year cycle of: medium,

medium, high, low productivity. In reality there is variation in the timing and

size of beech mast events (Wardle 1984; Allen & Platt 1990) which will

influence the demographic response of rodent and stoat populations. In terms

of the model predictions, a consistently shorter cycle will increase the overall

rate of increase making control more difficult, whilst a longer cycle will have

the opposite effect. Including stochastic variation in the timing of the mast

cycle is outside of the scope of the current models, which are deterministic, but

could conceivably be incorporated into future stochastic models if a transition

matrix could be quantified which described the probability of moving from one

state (mast, crash, normal) to the next given the current state and the time since

the last mast seedfall. More problematic is variation in the effect of a mast

seedfall on stoat population responses, since a high seedfall year and associated

high rodent density does not necessarily result in increased stoat density as was

found by Byrom (2004) at Craigieburn following a beech mast in 2002. The low

stoat densities observed in that study were mirrored by a similar decline in stoat

numbers over the same period in a different (braided river) habitat (Dowding in

Murphy & Fechney 2003), suggesting that some other mortality factor was

overriding the typical positive response to increased food supply. Identifying

the cause of this decline would not only improve understanding of stoat

population dynamics but could possibly lead to a novel control method.
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3. Disease/host models for CDV in
stoat populations

3 . 1 D I S E A S E / H O S T  M O D E L S

3.1.1 Model 4: disease/host model for a simple epidemic

The simplest model for an epidemic of a reasonably virulent disease is an SIR-

type model (Anderson & May 1992), which has one equation for the change

(dx/dt) in each of three host classes—susceptibles (S), infectives (I), and

recovered and immunes (R). The model is:

IS
dt
dS β−= Eqn 4a

IIS
dt
dI αβ −= Eqn 4b

I
dt
dR αδ )1( −= Eqn 4c

where, β is the disease transmission coefficient, α is the loss rate from the

infectious class through death or recovery (= 1/infectious period ), and δ is the

proportion of infected animals dying from the disease. No new susceptible

animals enter the population so the disease must eventually die out, and the

remaining population will consist of a mixture of animals which have caught

the disease and recovered to an immune state, and those which did not become

infected and are still susceptible. If the disease-free density of the population

prior to an epidemic (S
0
) is K then the contact rate, or number of potentially

infectious contacts made per day per infectious host in a population at K, is βK.

This model is essentially the same as for phocine distemper virus (PDV) in

North Sea seals (Grenfell et al. 1992). Disease transmission is assumed to occur

directly between hosts and the number of new infections per unit time is βSI

where β is effectively the proportion of susceptibles infected per infected host

per day. This transmission mechanism is described as ‘mass action’ because it

resembles the law of mass action in reaction kinetics (McCallum et al. 2001).

The number of infectious hosts recovering per unit time is the density of

infectious individuals multiplied by the loss rate from the infectious class (α)

multiplied by the proportion surviving infection (1–δ). The effect of any latent

period is subsumed within the transmission coefficient.

An alternative assumption is that transmission depends on the proportion of

individuals infected rather than the density infected. In this case the number of

new infections per unit time is βSI/N and the transmission mechanism is

referred to as ‘frequency-dependent’ (McCallum et al. 2001). Mass action

transmission would be expected where individuals mix freely and contacts

between them depend on their densities. Frequency-dependent transmission

occurs when the rate at which animals make contact is independent of density:

each susceptible host contacts the same number of other individuals per unit

time so the number of infectious contacts depends on the fraction of these
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individuals that are infected. For example, if mating represents the main

infectious contact, then the number of such contacts is likely to be relatively

independent of density and best represented by frequency-dependent

transmission.

3.1.2 Model 5: disease/host population model

To predict the course of disease over time and assess its long-term impacts on

the host population, the simple epidemic model must be combined with a

model for population growth of the host, in this case the birth pulse population

model (Model 2). This gives a model of the form:

ISSfNd
dt
dS β−+−= )( Eqn 5a

IIfNdIS
dt
dI αβ −+−= )( Eqn 5b

RfNdI
dt
dR )()1( +−−= αδ Eqn 5c

and at the birth pulse:

( )( )PINSS −+=' Eqn 5d

where β is the disease transmission coefficient, α is the loss rate from the

infectious class through death or recovery (= 1/infectious period), and δ is the

proportion of infected animals dying from the disease. N denotes the total

population density (= S + I + R), d is the density-independent death rate, and f

is the density-dependence coefficient = r
m
/K. At the birth pulse (S’) only

susceptible and recovered animals breed with a productivity P, and all new

births go into the susceptible class. The frequency-dependent transmission

model is the same but with βIS replaced by βSI/N in the first two equations.

3 . 2 P A R A M E T E R S  F O R  D I S E A S E  M O D E L S

CDV is transmitted via aerosol or direct contact (Appel 1987) so disease

transmission was assumed to occur directly between susceptible (S) and

infectious (I) individuals. Vertical transmission (from mother to offspring) was

not included in the stoat model since transmission does not occur across the

placenta in mink (Mustela vison) (Hagen et al. 1970). There are no data

available on CDV in stoats so the following parameters are mostly gleaned from

studies of CDV infection in domestic ferrets (Mustela furo). For ferrets exposed

to CDV, Ryland & Gorham (1978) report times from infection to death of 12–14

days for ferret-adapted strains and 21–25 days for canine strains. Given that any

CDV strain released against stoats will probably be passaged through stoats to

decrease its virulence to dogs and increase its virulence to stoats, the more

rapid time to death of 12–14 days was considered most likely. Taking an average

time to death of 13 days minus a latent period of 6 days (Crook et al. 1958),

gives an average infectious period of 7 days and thus a loss rate (α) from the

infectious class of: α = 1/7 = 0.143/day.



24 Barlow & Barron—Modelling stoat control dynamics

The transmission coefficient, β, is the most problematic parameter to estimate.

It is possible to estimate β from experimental manipulations or fit it to time

series of prevalence in the field (McCallum et al. 2001), but there are no such

data to estimate β for ferrets or stoats. Arbitrary values of β were chosen for the

exploratory disease/host models presented here, where the aim was to compare

the effects of different transmission models and the effects of different times of

CDV introduction on relative host suppression rather than make quantitative

predictions. Note that the same value of β will result in a different number of

new infections per unit time in the mass action compared with the frequency-

dependent model, since in the former the number of individuals infected per

unit time is βSI whereas in the later it is βSI/N. Proportional mortality rates of

ferrets infected with CDV range from 0.90 to 1.00 (Dunkin & Laidlaw 1926;

Ryland & Gorham 1978); a conservative proportional mortality of δ = 0.90 was

chosen as the model default. Although there is a latent or incubation period of

approximately 6 days when the affected individual is infected but not infectious

(see above), a separate latent class was not included in the model because this

latent period was short enough that that the possibility of an infected individual

dying from other causes before becoming infectious was minimal. Furthermore,

the inclusion of an incubating class did not substantially alter the disease

dynamics in the simple epidemic model. It was assumed that there was no loss

of immunity i.e., no transfer from the recovered immune (R) to susceptible (S)

class, since infection from morbilloviruses like CDV generally results in lifelong

immunity in recovered hosts (Barrett 1999).

3 . 3 R E S U L T S  O F  D I S E A S E / H O S T  M O D E L S

3.3.1 Model 4: disease/host model for a simple epidemic

The basic reproductive rate (R
0
) of a disease is the expected number of

secondary infections produced within the infectious period of one newly

introduced host (Anderson & May 1981). For the simple epidemic model with

mass action (MA) disease transmission this is:

α
βSR =0 Eqn 6

and for the corresponding model with frequency-dependent (FD) transmission,

R
0
 is:

α
β

=0R Eqn 7

For an epidemic to proceed, the number of secondary infections produced by

the original infectious host must be greater than one, therefore the condition

R
0

> 1 must be met for initiation of an epidemic. If R
0

= 1 is substituted into

equations 6 and 7 and solved for β, this gives an estimate of the minimum

transmission coefficient (β
min

) required for disease maintenance. For the MA

and FD models β
min 

= 0.062 and 0.143 respectively, where α = 0.143 and the

initial density of susceptible individuals (S
0
) is the equilibrium density of stoats

in a beech forest, S
0 

= K = 2.29. Figure 7 plots the proportional reduction in

stoat density, p, against various values of β. Both models show no reduction in

stoat density below β
min

, followed by increasing levels of p for higher values of
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β, asymptoting to p = 0.9 when all susceptible stoats become infected so that

the maximum population reduction is simply the disease mortality rate (δ =

0.9). Both models show that high values of β are required to overcome the short

duration of the infectious period and cause a substantial reduction in stoat

density.

If the initial stoat density (S
0
) varies, as it can do between mast and non-mast

years, then the MA model predicts, for a constant value of β, different impacts

on host density. For higher values of S
0
 there will be a greater proportional

reduction in host density whilst for lower values of S
0
, the reduction in host

density will be smaller. This is because the reproductive rate of the disease in

the MA model is dependent on host density so increasing the host density

increases the disease reproductive rate. Also, substituting R
0 
= 1 into equation 6

and solving for S shows that there is a threshold susceptible host density (S
T
)

below which an epidemic cannot proceed and above which it can:

β
α

=TS Eqn 8

In contrast, the equation for R
0
 for the FD model (equation 7) does not involve

the density of susceptible individuals, therefore the FD model predicts the same

proportional reduction in stoat density (for a constant β) regardless of the

initial density of susceptible individuals. This means, that given a fully

susceptible initial host population and provided β > α, a disease can become

established regardless of the host population density, i.e. is no threshold

density (S
T
) for an epidemic to proceed under the assumptions of the FD model.

The course of a simple epidemic for CDV is plotted in Figs 8A and 8B for the MA

model and Figs 8C and 8D for the FD model, where the transmission rate, β, has

been scaled to give the same reproductive rate, R
0 

= 2.4, for both models. The

speed of the epidemic is similar for both models, this is because they both had a

similar R
0
 and the speed of an epidemic is positively related to α(R

0
–1)

(Anderson & May 1992). The FD model predicted a larger number of stoats

infected than the MA model and consequently a larger reduction in host density.

This is because the FD model assumes a contact rate that is independent of host

density, i.e. that the number of potentially infectious contacts made per

Figure 7. Results from a
simple epidemic model for

CDV (Model 4), showing the
proportional reduction in

host density for varying
values of β, the transmission

coefficient, for the MA and
FD models, where S

0
 = 2.29

and α = 0.143.
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infectious host per unit of time remains the same regardless of host density.

However, in the MA model, the contact rate is proportional to host density so

that as host density starts to decrease due to disease-induced deaths, the contact

rate and thus the number infected per day declines.

These simple epidemic models assume that other host population processes

occurring do not affect the course of the epidemic. However, the influx of new,

susceptible individuals through births or a decline in total population size

through non-disease related deaths will affect the number of new infections per

unit time. The effects of births and other sources of host mortality on the

impact of CDV on stoat populations are explored in the following disease-host

population models.

3.3.2 Model 5: disease/host population model

Much theory has been developed on the conditions for host population

regulation by an endemic disease based on SIR-type models (e.g. Anderson &

May 1981). However, these conditions were developed from equilibrium

solutions for host density and disease prevalence which are probably not

applicable to a CDV-stoat system for three reasons. Firstly, stoat breeding is

strongly seasonal, occurring for a discrete period each spring, so that there is no

constant influx of susceptibles as assumed by these continuous time models.

Secondly, even between years, there is large variation in stoat density due to the

effects of mast seeding, so that host density is very unstable, which is not

conducive to disease persistence. Thirdly, the short disease duration and high
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Figure 8. Results of a simple epidemic model for CDV (Model 4). Panels (a) and (c) show the density of infectious stoats, and panels (b)
and (d) show the proportion of susceptible, infectious and immune stoats over the course of the epidemic. Panels (a) and (b) correspond
to the MA model where β = 0.15, α = 0.143, δ = 0.90 and S

0
 = 2.29; panels (c) and (d) correspond to the FD model where β = 0.34, α =

0.143, δ = 0.90 and S
0
 = 2.29.
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mortality rates assumed for CDV in stoats are characteristic of epidemic rather

than persistent/endemic disease. It was, therefore, concluded that CDV was

unlikely to persist as an endemic disease within local populations and that the

logistic model with its continuous births was not appropriate to predict CDV

epidemiology. Instead, the more realistic birth pulse model (Model 2), was used

to investigate the timing of CDV introduction in relation to the mast cycle and

birth pulse and the effects of compensatory mortality on the relative size of the

epidemics. Also, the time taken for stoat populations to recover to densities at

which they were susceptible to future outbreaks and the size of these future

outbreaks was investigated.

The basic reproductive rate of the disease is similar to that of the simple

epidemic, except that non-disease mortality also contributes to the loss of

infectious stoats. Thus for the MA population model:

fNd
SR
++

=
α

β
0 Eqn 9

and R
0
 for the population model with FD transmission is:

fNd
R

++
=
α

β
0 Eqn 10

where d is the density-independent, non-disease mortality, and f is the density-

dependence coefficient = r
m
/K. For the MA model, a high disease transmission

rate is required to initiate an epidemic in late winter/early spring, before the

birth pulse, as stoat densities are very low at this time of year. Assuming that an

epidemic would not occur in the late winter/early spring following a crash

breeding season because stoat densities are generally too low, but that an

epidemic is possible at this time of year following a normal or mast breeding

season, this gives an estimated minimum transmission rate of: β
min 

= 0.25

(where S
0 

= N
0 

= 0.6, d = 0.0021 and f = 0.0012) for the MA model. The

predicted epidemics for different disease introduction times are shown for both

the MA (Fig. 9) and FD models (Fig. 10) using β = 0.25. Given that it is unknown

what form or value the transmission function would actually take, it is best to

interpret these results by comparing the relative rather than the absolute size of

the epidemics produced by different disease introduction times.

For the MA model, if CDV was introduced in January after the birth pulse, the

size and speed of the epidemic was determined primarily by the initial density

of susceptible stoats. So the greatest reduction in relative stoat density occurred

following a large birth pulse, in a mast breeding season (Fig. 9E) and the least

reduction occurred following a crash breeding season (Fig. 9F). If CDV was

introduced in November before the birth pulse, initially only low levels of

infection resulted and the reduction in relative host density was minimal.

However, once births occurred and new susceptible stoats entered the

population, an epidemic was initiated where again the final size of the epidemic

was determined by the size of the birth pulse (Figs 9A–C). Because the size of

the epidemics was determined primarily by the size of the birth pulse, whether

this was before or after the introduction of CDV, similar reductions in host

density were predicted for both November and January introductions (compare

Figs 9A to 9D, 9B to 9E, and 9C to 9F).
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Figure 9. The size of the epidemic and the decline in relative host density caused by introducing CDV into a stoat population at different
stages of the mast cycle, and before, panels (a)–(c), or after, panels (d)–(f), the birth pulse; based on the MA version of Model 5 where β
= 0.25, α = 0.143 and δ = 0.90. Vertical arrows indicate the timing of the birth pulse.

Figure 10. The size of the epidemic and the decline in relative host density caused by introducing CDV into a stoat population at
different stages of the mast cycle, and before, panels (a)–(c), or after, panels (d)–(f), the birth pulse; based on the FD version of Model 5
where β = 0.25, α = 0.143 and δ = 0.90. Vertical arrows indicate the timing of the birth pulse.
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For the FD model, if CDV was introduced in January after the birth pulse, the

speed of the epidemic was slightly faster and the final reduction in host density

was slightly larger at lower initial host densities (see Fig. 10F compared with

Figs 10D and 10E). This was because strong density-dependent mortality

following normal and mast breeding seasons compensated for the losses

through infection but, following a crash breeding season, when stoat densities

were low anyway, there was no such compensation. If CDV was introduced in

November before the birth pulse, there was only weak density dependence

operating at this time and epidemics produced at different stages of the mast

cycle were initially very similar (Figs 10A–C). Once births occurred, this

increased the proportion of susceptibles in the population in normal and mast

years but not appreciably in a crash year. However, increases in the infection

rate due to the increased proportion susceptible were offset by the increased

density-dependent mortality following a large birth pulse. Thus it was at

intermediate densities, following a normal breeding season, that the largest

reduction in relative host densities occurred (Fig. 10A).

In summary, the MA model showed the most sensitivity to the variations in

density caused by the mast cycle, so that the control rate was better if CDV was

introduced in a peak stoat year. The influence of the initial density of

susceptibles on the infection rate overrode any density-dependent

compensation through other sources of mortality which is not surprising given

that disease dynamics are much more rapid than density dependent mortality

(β >> f). In contrast, for the FD model, the initial density of susceptibles didn’t

influence the size of the epidemic but strong density-dependent mortality in

peak stoat years did slightly reduce the impact of disease.

For both the MA and FD models, persistent (endemic) disease could not be

generated even if the loss rate from the infectious class was halved (α = 0.07)

and/or very high values of the transmission rate (up to β = 1) were used. This

was because of the birth pulse structure of the model which meant that there

was not a constant influx of susceptibles to sustain the disease.

The time taken for stoat densities to recover from an epidemic is proportional

to the level of control achieved so is the same as that predicted from the stoat

population models (see Section 2.3.5). The recovery time to densities at which

the population is susceptible to further CDV outbreaks is dependent on the

values for the disease parameters. These values determine the initial reduction

in stoat densities and the threshold density of susceptible stoats (MA model) or

the threshold proportion of susceptible stoats (FD model) which the population

must attain for a second epidemic to be initiated. In practice, the time to

recovery is determined largely by the time until, and the size of, the next birth

pulse. The influence of the number, or proportion, of immune stoats in the

population is minimal because of the low recovery rate from CDV (= 0.1), the

assumption that immune females produce susceptible offspring, and the high

turnover rates in stoat populations. For a CDV epidemic initiated in November,

where β = 0.25, α = 0.143, and δ = 0.9 as before, the FD model predicts that

stoat populations will be susceptible to another CDV epidemic after

approximately 1 year, at the next birth pulse, providing this is a normal or mast

breeding season. If the post-epidemic birth pulse is a normal one a reduction in

stoat density of approximately 55% is predicted; if the birth pulse is a mast one



30 Barlow & Barron—Modelling stoat control dynamics

then a reduction of 67% is predicted. However if the post-epidemic birth pulse

is a crash one, the population will not be susceptible for another year. For the

MA model, with the same parameter values, the recovery time will depend on

the timing of the initial epidemic in relation to the mast cycle. If an epidemic

occurs before a mast year it will only take approximately 1 year before stoat

densities reach the threshold susceptible host density, S
T
 = 0.58, and another

epidemic which reduces stoat populations by 20% is possible. If, however, a

mast birth pulse is 2–4 years away it will take this long for the populations to

reach the threshold density, but by then the density of susceptible hosts will be

high enough (> 1.7 C/100TN) to cause a large epidemic which reduces stoat

density by 80%.

3 . 4 D I S C U S S I O N  O F  D I S E A S E / H O S T  M O D E L S

CDV was predicted to not persist as an endemic disease in stoat populations,

primarily because of the birth pulse structure assumed in Model 5 which

precludes the continuous recruitment of susceptibles required to maintain the

disease within a host population. A birth pulse seems a reasonable

approximation of the field situation, where births are synchronised by day

length cues, thus the practical use of CDV would appear to be as an innundative

rather than a classical biocontrol agent. It is possible that spatial interactions,

such as ongoing recruitment of susceptible individuals to the population by

immigration or the spread of CDV to, and re-infection from, neighbouring

populations could provide a mechanism for disease persistence but the rapid

dynamics predicted might preclude even this, since by the time the affected

population has recovered to levels where it is susceptible again, the epidemic

wave will have travelled far away and there will be no source for re-infection.

The rapid dynamics were a result of the short infection period (1/α) assumed in

the model which was estimated from CDV infection in ferrets rather than stoats.

If a suitable vaccine strain of CDV can be developed (Zheng in Murphy &

Fechney 2003), then inoculation of captive stoats should provide estimates of

the average infectious period and mortality rates of CDV in stoats and improved

model predictions could be made. However, it will be very difficult to estimate

the disease transmission rate from laboratory studies; the most robust way of

estimating the transmission rate is from monitoring a natural epidemic

(McCallum 2000).

It is also important to determine how the transmission rate, specifically the

contact rate component (the number of potentially infectious contacts made

per infected host per unit time), scales with host density in the field as this will

determine whether transmission is density- (MA) or frequency-dependent (FD).

The implications of the mode of transmission (MA or FD) are significant for the

use of CDV as a biocontrol agent for stoat populations, which are generally at

low densities. For example, if transmission is density dependent (MA), then this

implies that there will be some host density threshold that needs to be

exceeded before an epidemic can be initiated and this may preclude the use of

CDV at times of the year, such as winter and spring, when stoat densities are

below this threshold. This is problematic because, under the assumptions of MA

transmission, the best time of year to initiate a CDV epidemic would be in
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summer when stoat density is highest, yet the purpose of control is to prevent

these high densities from occurring in the first place. On the other hand, if

transmission was frequency dependent, then a CDV epidemic could be initiated

in late winter to early spring when densities are low, reducing the number of

potential breeders and thus peak summer densities. It is possible that contact

rates between stoats are frequency- rather than density-dependent during the

breeding season when the roaming males probably make the same number of

contacts with females regardless of density, so provided the transmission rate is

high enough (β > α), the population would be susceptible to a CDV epidemic. It

is worth noting that several studies of the epidemiology of wildlife diseases

have found little empirical evidence to distinguish between the two different

transmission functions (McCallum 2000; McCallum et al. 2001), indicating that

the problem is not confined to the disease-host system presented here. CDV

epidemics in wild populations of black footed ferrets and lions have shown

evidence of a threshold host density for disease initiation (May 1986; Packer et

al. 1999), which is suggestive of a MA transmission function. However, since

the contact rate component of the disease transmission function depends on

the social structure of the host population rather than being an attribute of the

virus, we cannot assume the same transmission function for CDV in stoat

populations.

An assumption implicit in the MA transmission function is that of homogeneous

mixing, i.e. susceptible and infected hosts mix completely with one another so

that contacts between them are random and in proportion to their respective

densities. Populations are rarely homogenous in nature, often showing

aggregation in response to underlying resource distributions. Heterogeneity

can also be caused by individual variation in susceptibility to disease.

Heterogeneity in the risk of becoming infected effectively lowers the disease

transmission rate when averaged over different populations or over individuals

of differing susceptibility. Barlow (2000) showed that it was necessary to

include some heterogeneity of risk in possum-Tb models to mimic the disease

dynamics observed in the field, namely high possum density in the presence of

Tb and a low possum threshold density for Tb elimination. He speculated this

heterogeneity could be due to spatial variation in habitat carrying capacity so

that possum density in some habitats is above the threshold for disease

persistence yet below it in others, which could explain the ‘hot-spots’ of high

disease prevalence observed in the field (Barlow 2000). There is some evidence

that stoat populations are aggregated in space (J. Christie, DOC, pers. comm.

2004), so it is likely that CDV infection would also be patchy in space. The

models presented here also assumed that the stoat populations were fully

susceptible before the introduction of CDV and that all individuals were equally

susceptible. The results of a screening study of viral diseases, including CDV,

potentially present in New Zealand stoat populations (McDonald in Murphy &

Fechney 2003) should give some indication of how susceptible New Zealand

stoat populations are to CDV.

Since the values of the transmission rate, β, used in the model were arbitrarily

chosen, it is not worth dwelling on the quantitative predictions of the model.

For a given β, the models showed that, under the assumptions of MA

transmission, relatively lower population densities were achieved by releasing

CDV in a mast year when stoat densities were highest. Compared with the MA
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model, the predicted reduction in population density under the FD model was

less sensitive to the initial density of susceptibles (S
0
), but more sensitive to

compensation in host mortality rates (f). These conclusions are encapsulated by

equations 9 and 10 for the reproductive rate for the respective models. The type

of model presented here will be useful for comparison and evaluation of

potential disease biocontrol agents. Provided estimates for the infectious period

(1/α) and the disease mortality rate δ can be obtained, and the relative

infectiousness of the diseases can be estimated (so that the βs can be scaled

accordingly), then simple epidemic models could be used to determine the

relative effectiveness of each potential biocontrol agent. In terms of selecting

the best classical biocontrol agent, theory predicts that the highest levels of

control will be achieved with diseases of intermediate pathogenicity (Anderson

& May 1981). This is because if the mortality rate from infection is too high

(large δα), infected hosts die before effective transmission is achieved and the

disease does not persist in the host population. In this case, the disease

transmission rate would have to be very high to offset the large loss rates from

the population and ensure persistence (i.e. to make the numerators of

equations 9 and 10 larger than the denominators, giving R
0
> 1). Stoat

populations in beech forests are so unstable that, for CDV at least, persistent

disease in local populations is unlikely. It is possible that CDV could be

maintained in an alternative host species such as ferrets which could provide a

source of re-infection for stoat populations, although epidemic rather than

endemic dynamics are likely to result from this re-infection due to the short

infectious period of CDV. If a classical biocontrol agent is sought for stoat

populations, it may be better to look for a pathogen that has a mechanism for

persistence when stoat densities are very low such as a pathogen that has a free-

living (outside the host) infective stage or one that causes latent (covert)

disease in some individuals (Anderson & May 1981). On the other hand, the

predicted epizootic behaviour of CDV in stoat populations may make it useful as

an inundative biocontrol agent which can be released before an anticipated

high stoat density year (e.g. after a mast seedfall) to produce an epidemic and

rapidly reduce stoat populations. With inundative biocontrol there is no

expectation that the disease will persist in the host population but this could

prove advantageous in terms of slowing the evolution of host resistance to the

disease since the period of disease-host association is brief.
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4. General conclusions and
recommendations for future
research

The birth pulse model with different intrinsic rates of increase in mast, crash

and normal years (Model 2), best predicted the large year-to-year variation in

stoat abundance observed in beech forest. Using this model, little difference

was predicted in the long-term proportional reduction of stoat density under

culling or sterilisation control. Under continuous control, sterilisation was

slightly more effective at reducing peak (summer) stoat density; however,

under pulsed control, culling was marginally more effective than sterilisation.

Control of either kind was relatively more effective against populations in non-

beech forests than against those in beech forests, essentially because

populations in non-beech habitats have a lower intrinsic rate of increase.

However, more robust estimates of population parameters in non-beech

habitats are required before we can make quantitative predictions for these

populations.

The results of the models for both habitat types are only applicable to closed

populations but, in reality, there is considerable dispersal between local stoat

populations and this dispersal could change the relative effectiveness of

sterilisation and culling control. For example, if immigration into a local

population is dependent on local population density then sterilisation could be

more effective than culling at reducing local population density. This is because

it reduces recruitment both from local sources by reducing the birth rate and

from external sources because the sterilised female is still present to maintain

her territory and prevent immigration. In contrast, culling increases mortality

but results in empty territories which are vulnerable to recolonisation from

neighbouring populations. Therefore, the main recommendation for further

research into stoat population dynamics is to incorporate spatial structure into

the population models. It is envisaged that a spatial model would take the form

of a grid of local populations which are linked by dispersal. To parameterise this

type of model, data on stoat dispersal and recolonisation rates would be

required.

Model 2 was also used to predict the likely dynamics of canine distemper virus

(CDV) in stoat populations. The model assumed a short infectious period and a

high disease mortality rate which produced a short-lived epizootic in the

modelled stoat populations. CDV was not predicted to persist as an endemic

disease in New Zealand stoat populations because strongly seasonal breeding

precludes the continuous recruitment of susceptibles required to maintain CDV

within the stoat population. Similarly, very low birth rates in crash years of the

mast cycle would result in susceptible host densities below the threshold for

disease maintenance. It is possible that the spread of CDV to, and re-infection

from, neighbouring populations could provide a mechanism for disease
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persistence and it would be useful to explore this possibility using a spatial

population model.

Whether transmission is density- (MA) or frequency-dependent (FD) may be

critical to whether CDV could be used to initiate an epizootic before the birth

pulse when stoat densities are very low. However, as CDV is just one of many

candidate biological control agents (McDonald & Larivière 2001), researching

the transmission behaviour of a disease that may never be introduced could

represent unwarranted effort. Instead, the simple models developed here could

be used to make general comparisons among candidate biocontrol agents under

both MA and FD transmission assumptions, and transmission mechanisms could

then be investigated once the most promising candidates had been identified.

Quantitative model predictions are only as good as the data on which they are

based. The following list identifies the types of data required to obtain better

parameter estimates and further develop the models.

• Estimates of stoat dispersal and recolonisation rates in relation to stoat

density and the size of the area controlled, to parameterise a spatial model.

• More long-term (> 4 years) time series of annual stoat densities, particularly

in non-beech habitats, to obtain better estimates of the intrinsic rate of

increase.

• Identification of the factors driving variation in stoat abundance in non-

beech forests.

• Validation/testing of the negative relationship between juvenile stoat

survival and population density.

• Identification of the relationship between trap-catch indices of density (C/

100TN) and actual stoat density.

• Estimation of disease parameters for other potential biological control

agents for stoats (e.g. Aleutian disease virus) to plug into model and compare

with predicted CDV epidemiology.
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Appendix 1

P E A K  ( S U M M E R )  S T O A T  D E N S I T Y  I N D I C E S  ( N )
I N  S U C C E S S I V E  Y E A R S  ( t  a n d  t + 1 )

DATA FROM STUDIES  WHERE STOAT TRAP CATCHES WERE MONITORED FOR MORE THAN ONE YEAR.

FOREST TYPE SITE YEAR Nt Nt+1

Non-beech Northern Urewera* (Otamatuna, DOC 1999a) 97 0.330* 0.190*

Non-beech Northern Urewera* (Otamatuna, DOC 1999a) 98 0.190* 0.390*

Non-beech Boundary Stream* (DOC 1999b) 97 0.160* 0.175*

Non-beech Mapara (Murphy et al. 1998) 90 0.219 0.227

Non-beech Mapara (Murphy et al. 1998) 91 0.227 0.188

Non-beech Mapara (Murphy et al. 1998) 92 0.188 0.211

Non-beech Mapara (Murphy et al. 1998) 93 0.211 0.250

Non-beech Mapara (Murphy et al. 1998) 94 0.250 0.159

Non-beech Trounson (DOC 1999c) 97 0.172 0.100

Non-beech Trounson (DOC 1999c) 98 0.100 0.065

Non-beech Pureora (exotic forest, King et al. 1996) 83 1.500 0.900

Non-beech Pureora (exotic forest, King et al. 1996) 84 0.900 0.500

Non-beech Pureora (exotic forest, King et al. 1996) 85 0.500 0.300

Non-beech Pureora (exotic forest, King et al. 1996) 86 0.300 0.800

Non-beech Pureora (unlogged podocarp, King et al. 1996) 83 0.550 0.300

Non-beech Pureora (unlogged podocarp, King et al. 1996) 84 0.300 0.700

Non-beech Pureora (unlogged podocarp, King et al. 1996) 85 0.700 0.000

Non-beech Pureora (unlogged podocarp, King et al. 1996) 86 0.000 0.350

Non-beech Pureora (logged forest road edge, King et al. 1996) 83 0.900 0.250

Non-beech Pureora (logged forest road edge, King et al. 1996) 84 0.250 0.300

Non-beech Pureora (logged forest road edge, King et al. 1996) 85 0.300 0.550

Non-beech Pureora (logged forest road edge, King et al. 1996) 86 0.550 0.550

Non-beech Mapara (Murphy & Bradfield 1992) 89 0.120 0.150

Beech Mount Misery (Wilson et al. 1998) 75 2.700 4.100

Beech    M Mount Misery (Wilson et al. 1998) 76 4.100 4.000

Beech    C Mount Misery (Wilson et al. 1998) 77 4.000 2.700

Beech Mount Misery (Wilson et al. 1998) 78 2.700 5.300

Beech    M Mount Misery (Wilson et al. 1998) 79 5.300 5.400

Beech    C Mount Misery (Wilson et al. 1998) 80 5.400 1.400

Beech Mount Misery (Wilson et al. 1998) 81 1.400 1.400

Beech    M Mount Misery (Wilson et al. 1998) 82 1.400 5.400

Beech Eglinton (King 1983) 75 1.460 0.700

Beech    M Eglinton (King 1983) 76 0.700 5.430

Beech    C Eglinton (King 1983) 77 5.430 1.420

Beech    C Eglinton (King 1983) 80 5.490 0.430

Beech Hollyford (King 1983) 75 9.280 1.630

Continued next page >>

N = no. caught/100 uncorrected trap nights.

* Indicates numbers were corrected.

M = mast year, C = ‘crash year’ following a mast year.
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FOREST TYPE SITE YEAR Nt Nt+1

Beech    M 10 Hollyford (King 1983) 76 1.630 4.450

Beech    C 10 Hollyford (King 1983) 77 4.450 0.840

Beech    C 10 Hollyford (King 1983) 80 6.190 0.220

Beech    M 11 Craigieburn (King 1983) 74 0.720 1.350

Beech 11 Craigieburn (King 1983) 75 1.350 2.860

Beech    M 11 Craigieburn (King 1983) 76 2.860 3.680

Beech    C 11 Craigieburn (King 1983) 77 3.680 1.250

Beech 12 Mount Cook (King 1983) 75 0.940 2.970

Beech 12 Mount Cook (King 1983) 76 2.970 1.800

Beech    C 13 Eglinton (Deer Flat, Murphy & Dowding 1995) 90 0.362 0.178

Beech 13 Eglinton (Deer Flat, Murphy & Dowding 1995) 91 0.178 0.089

N = no. caught/100 uncorrected trap nights.

* Indicates numbers were corrected.

M = mast year, C = ‘crash year’ following a mast year.

Appendix 1  continued
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Appendix 2

J U V E N I L E  D E N S I T Y - D E P E N D E N T  M O R T A L I T Y
F U N C T I O N  I N  M O D E L  3

First-year survival versus stoat density (trap catches per 100 corrected trap-

nights (Stoats/100CTN)) in the birth summer used to estimate juvenile density-

dependent mortality function in Model 3. Data are from Powell & King (1977).

STOATS/100CTN 1ST YEAR FINITE LOG SURVIVAL

SURVIVAL RATE (s) RATE, LN(s)

0.73 0.34 –1.07881

1.36 0.137 –1.98777

1.456 0.066 –2.7181

1.646 0.243 –1.41469

1.709 0.212 –1.55117

2.848 0.168 –1.78379

3.703 0.018 –4.01738

4.462 0.018 –4.01738

5.443 0.018 –4.01738
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