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A B S T R A C T

The New Zealand Department of Conservation�s Measuring Conservation

Achievement (MCA) process is an ambitious and comprehensive attempt to

inform conservation decision-making and to report on the difference made by

conservation management actions using a rigorous foundation of research and

empirical data. Generalised regression analysis and spatial prediction (GRASP)

provides several key functions for MCA, and indicator programmes in general,

including: 1) spatially explicit estimates produced by spatial extrapolations from

point data; 2) regional descriptions of biodiversity patterns and factors

influencing biodiversity (or other characteristics of interest); and 3) methods to

identify and correct biases in data that result from ad-hoc or biased sampling

patterns. The use of GRASP to provide information for MCA is developed and

demonstrated, using vegetation data from the central South Island of New

Zealand. Vegetation condition indices and weed distributions were combined

with climatic, landform, land cover, cadastral and fragmentation variables to

produce spatial predictions of the biodiversity attributes measured on the plots.

A sampling bias towards vegetation in better condition, resulting from biased plot

distribution, was corrected using GRASP. Vegetation condition indices were

successfully modelled and showed different patterns on conservation and non-

conservation lands. Weed distributions were successfully modelled with

composite models, and showed a wide variation between species in their

relationships to environmental and other variables. Together, these provide

spatially explicit predictions of condition and pressure for use in conservation

planning and reporting. The results demonstrate the utility of GRASP for

systematic conservation management, and highlight the need to invest in

underlying data collected according to well-defined sampling schemes.

Keywords: Measuring conservation achievement, management, generalised

regression analysis and spatial prediction, geographic information systems,

biodiversity, weeds, vegetation condition, probability sampling, found data, New

Zealand
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1. Introduction and background

The 1990s to early 2000s has seen a developing trend towards conservation

management becoming more systematic and rigorous. A large part of this trend

has focused on prioritising and optimising reserve design and selection (e.g.

Margules & Pressey 2000). Underlying this are advances in the prediction and

depiction of the spatial distribution1 of conservation assets such as species (e.g.

Franklin 1995; Cawsey et al. 2002; Ferrier et al. 2002a) or communities (Ferrier

et al. 2002b). Conservation management is, of course, about more than just

reserve design, and to fully develop these systematic approaches requires that

systematic conservation planning be generalised beyond the design of reserve

systems to incorporate planning for the entire range of conservation activities,

as well as reviewing and reporting on these activities.

Most conservation agencies must juggle a diverse range of activities, all

competing for the same limited budget. This situation is particularly

pronounced in New Zealand (and many other island ecosystems) where

biodiversity conservation is not only about mitigating direct human impacts,

such as logging, land clearance and hunting, (which are generally excluded

from reserve areas) but also indirect impacts, such as introduced predators,

pests, and weeds. Thus, information is required not only on the spatial

distribution of assets, but also on the condition of the assets, and the pressures

on biodiversity, such as the prediction of alien plants (Higgins et al. 1999) and

the dynamics of invasive pines (Higgins et al. 1998).

Systematic conservation management can be viewed as the extension of

systematic conservation planning beyond reserve design to the implementation

of the full range of conservation activities and the review and reporting of these

activities against conservation objectives. Methods and approaches are required

for explicit and systematic planning and prioritising between different sorts of

places (e.g. forest reserves, marine reserves), and between very different sorts

of activities (e.g. weed control, buying new reserves, research, public

education, improving visitor facilities). Methods and approaches are also

developed for the systematic review of current or past actions, and reporting on

outcomes achieved and resources required for achieving goals. Systematic

conservation management can be viewed as an integrated framework for

planning, implementation, reporting and review of conservation actions.

The Measuring Conservation Achievement process (MCA, Stephens 1999;

Stephens et al. 2002) developed by the New Zealand Department of

Conservation (DOC) is a comprehensive and ambitious attempt to inform

national conservation decisions and report on the difference made by

conservation activities using an objective, rigorous basis. The power of MCA is

that it provides a framework for systematic conservation management by

informing allocation decisions and allowing reporting on a broad range of

conservation assets and activities. However, this power comes at a cost: the

MCA process is information hungry; it requires spatially explicit information

1 Many of the terms used in this report are explained in a glossary, see p. 55.
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about a multitude of diverse conservation threats and assets. The broad-scale,

comprehensive and quantitative approach used by MCA is made feasible only by

the recent and continuing exponential growth in computing power and

information processing capability of computers.

With the MCA process, DOC has the opportunity to produce a world first:

conservation decision making and reporting with an explicit and largely

quantitative basis. However, this opportunity can only be realised with

investment in the information foundation for MCA. To be effective, MCA needs

a strong foundation in data and research. Reams of raw data are not useful for

MCA; it requires derived measures arising from generalised and integrated

information. This process of integrating different sorts of information and

generalising it into forms useful for decision making can be represented by an

information pyramid (Fig. 1). This process provides an excellent example of

informed conservation decision making, as described by Overton et al. 2002.

Without investment in this foundation, DOC will be in a situation all too

common within conservation management agencies�that of making decisions

based on little or no data, without objective methods for integrating the

information already available, and being quite unable to report on what

difference conservation effort is making to the state of natural heritage (Fig. 2).

1 . 1 G E N E R A L I S E D  R E G R E S S I O N  A N A L Y S I S  A N D
S P A T I A L  P R E D I C T I O N  ( G R A S P )

GRASP (Lehmann et al. 2002) is both a general concept and a specific

implementation in Splus (Chambers & Hastie 1993). GRASP combines the

power of advanced statistical and spatial analyses with the advantages of

extensive spatial information managed in Geographic Information Systems

(GIS).

The GRASP process is perhaps best understood as a means of defining the

patterns of the response variable in relation to climatic, landform or other

spatial predictor variables and using these patterns to make the best prediction

of the response variable across the landscape. This process can be illustrated

with a single response variable and a single spatial predictor variable. Consider

the case of using a GIS surface of mean annual temperature to make spatial

extrapolations of the abundance of a weed species for a region. In this case,

GRASP is a simple regression technique, using plot observations of weed

abundance to produce a regression model of weed abundance as a function of

temperature. Using this model and the surface of mean annual temperature, one

could then predict weed abundance for the entire region.

The GRASP process can also use categorical predictor variables, such as land

cover or soil type. Consider a model of weed abundance as a function of land

cover. In this case, the GRASP model would just be an analysis of variance,

consisting of the mean weed abundance for each land cover category. The

prediction of weed abundance across the region would be simply the average

weed abundance for each land cover class, applied to all places with this

particular land cover.
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Most models in GRASP are more complex than either of these examples, and

many include a combination of continuous variables and categorical variables.

The overall approach, however, remains the same. Essentially, GRASP takes

each variable of interest and tries to find the pattern of this variable across the

landscape, relative to environmental, land cover, fragmentation, or spectral

characteristics. It then uses this pattern to predict the variable of interest for

the entire region.

More generally, GRASP can be seen as a combination of regression modelling

and spatial prediction. Modern regression analysis is used to establish

relationships between a response variable and a set of spatial predictors. The

regression models are then used to make spatial predictions of the response.

The GRASP process requires point measurements of the response, as well as

regional coverages of predictor variables that are statistically (and functionally)

important in determining the patterns of the response. In the study reported

here, point measurements of vegetation condition and weed abundance (the

response variables, used one at a time) were regressed against environmental

variables such as climate, landform, land cover and fragmentation (the spatial

predictors). These regression relationships can then be used to predict the

species abundance from the environmental surfaces.

The GRASP implementation and graphical user interface (GUI) are designed to

facilitate the GRASP process and the analyses needed to check the models and

predictions. The implementation consists of a collection of functions and user

interface in Splus that provide a toolbox for quick and easy data checking,

model building and evaluation, and calculation of predictions. In addition to

making the GRASP process easier, this implementation also standardises the

Figure 1.   Information pyramid, showing MCA at the apex. Here, the MCA process is supported by
quantitative data and rigorous methods for integrating and generalising the information. After
Overton et al. (2002).
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modelling process and makes it more reproducible and less subjective, while

preserving flexibility. The current version uses generalised additive models

(GAMs), a modern non-parametric regression technique with a number of

advantages for ecological modelling. GRASP is a leading technique for making

these predictions, and has been developed in conjunction with, and been

reviewed by, international leaders in the field, many of whom actually use

GRASP in their work. However, GRASP is still relatively new, and refinements

and improvements are still being developed.

1.1.1 GRASP and monitoring programmes

GRASP performs three powerful roles in MCA, and indicator programmes in

general. Each of these roles is demonstrated in this report.

1. GRASP provides robust spatial predictions (maps) across entire regions from

plot-based measurements. By using the environmental information to make

spatial extrapolations from plot measurements, GRASP provides the best

estimate for the spatial pattern of the indicator across the region. This is

illustrated in this report by the maps of the vegetation condition indices and

weed abundances.

2. GRASP provides methods for dealing with the many problems associated with

non-representative (biased) data from past surveys or data collected as a by-

catch from other conservation work. The regression techniques used in

GRASP offer a number of opportunities to account for a biased distribution of

plots across the landscape. This correction is inherent in the regression

approach, and can be enhanced by estimating plot densities, as is done in this

report.

Figure 2.   Information pyramid without a foundation. This is the scenario resulting from a lack of
investment in research and monitoring and methods for integrating and generalising the
information.
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3. GRASP develops the regional relationships between indicators and

environmental factors. These relationships are important for understanding

biodiversity patterns and influences on them at regional scales, and to provide

insight for management and research. In this report, the regression models

show relationships between the vegetation condition indices and weed

abundances (response variables) with the environmental variables such as

climate, substrate, land use, or fragmentation (predictor variables).

1 . 2 S A M P L I N G  M E T H O D S  A N D  F O U N D  D A T A

1.2.1 Probability sampling

Consider the problem faced in this study. We are attempting to estimate

vegetation condition and weed distributions for a study region of almost 6

million hectares (Fig. 3). Clearly, it is impractical to measure every hectare of

the region. Methods are required to sample the area and to make estimates for

the whole region from this sample. While much of statistics (including the

methods in GRASP) deals with what to do once you have the data, sampling

methods deal with where and how to gather the data. Probability sampling

refers to sampling designs in which the locations or elements to sample are

chosen according to a random sampling scheme. Examples include simple

random sampling, stratified random sampling and most grid sampling.

Figure 3.   Locations of samples used in the analyses. The different data sources are shown, along
with the boundary of the study region.
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Correct sampling methods are important for ensuring that samples are not

biased and accurately reflect the population of interest. Without a sound

sampling procedure, or appropriate methods for dealing with the found data

(see below), there is no assurance that the sampled measurements are an

accurate representation of the true population. One of the fundamental

requirements for a sampling scheme is to define the population that we want to

characterise. For this study, we can define our population of interest as every

hectare of the study region. More generally for MCA, we could define it as every

hectare of New Zealand.

Two recent examples exist of the use of probability sampling of ecosystem

characteristics in New Zealand. Hall et al. (2001) and Coomes et al. (2001) used

a combination of existing plots and new plots on a grid sampling scheme to

establish baseline and monitoring schemes for carbon storage in indigenous

forests. Overton et al. (2000, 2002) used probability sampling schemes and

GRASP to characterise roadside biodiversity for the Waikato Region.

Another component of sampling design is selecting which plot methods to use.

This study used standard recce (see Section 3.2.4) plots to characterise

vegetation. Since existing plot methods were designed for different purposes, it

may well be worthwhile to develop new plot methods for characterising

biodiversity, but this topic is not dealt with in this report.

1.2.2 Sampling design

General sampling schemes, such as systematic grid sampling, are excellent ways

to achieve an unbiased characterisation of a population. Using grid sampling or

simple random sampling, the samples are distributed across subpopulations in

proportion to the abundance of each in the overall population.

Sometimes, however, certain subpopulations may be of much more interest

than others. As a result, it may be more efficient (i.e. more information can be

gained for the same money) to sample more heavily in areas of greater interest.

This is called stratified sampling. A recent example of stratified sampling of

biodiversity in New Zealand is the roadside biodiversity sampling of Overton et

al. (2002). It was known from previous work (Overton et al. 2000) that roadside

indigenous biodiversity was much higher when the road passed through forest

than when it passed through pasture. Yet only 5% of the roadsides were next to

forest, while 70% were next to pasture. A systematic sample of 300 sites would

have achieved about 210 pasture sites but only 15 forest sites. In this example

sampling was stratified by land cover, and roadsides through forests were

sampled more intensively than roadsides through pasture to achieve a roughly

equal number of pasture and forest sites.

Stratified sampling essentially introduces bias into the sampling by sampling

some subpopulations more heavily than others. However, the bias can be

corrected by using the sampling intensities to weight the analyses and remove

the bias. The result is unbiased estimates of the overall population with more

information for a given amount of money.
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1.2.3 Found data

Found data has been defined by Overton et al. (1993) as data for which the

sampling design is unknown. This may be because the data was not collected

using a specific design, or because the design has been lost, or because the

original design reflected other constraints or objectives. The main difficulty

with found data is that the sampling intensities are not available for use in

analysis. For instance, if the data came from a biased design, then to achieve an

unbiased result, the sampling intensities would need to be taken into account in

the analyses. However, sometimes sampling intensities are not available. Since

sampling design specifications are one of the most important pieces of

information that must be known for the rigorous use of data, sampling design

specifications should be a standard part of metadata.

The existing data used in this study are found data. They consist of a collection

of surveys done at different times and places, with different sampling designs. It

is also clear that the existing data are biased towards particular parts of the

landscape. Certain regions and certain land covers, like indigenous forests, are

much more heavily sampled than, for example, pastoral farming land in the

Canterbury plains. If one is interested in getting the overall value of a vegetation

condition index for the study region, it is clear that a simple mean of the

existing data will not suffice. Since the existing data are biased towards

indigenous forest in good condition, this would result in an erroneously high

estimate of vegetation condition across the region.

Overton et al. (1993) proposed two solutions to the problem of found data. One

consisted of estimating the inclusion probabilities, and the other of using

regression techniques to account for the bias. GRASP is very useful for both of

these approaches, and both are used in this study.

Found data are not free data. A large amount of work is required to use such

data in a robust fashion. However, it should be noted that one of the most

valuable uses of past data is in the characterisation of historical patterns, such as

developing 1990 baselines for carbon monitoring (Hall et al. 2001), or

characterising natural distributions of species in undisturbed forests (e.g.,

Leathwick 1998, 2001; Leathwick & Austin 2001; Leathwick & Whitehead 2001;

Lehmann et al. 2002a), or past patterns of weed invasion (Wiser et al. 1998).
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2. Objectives

The objectives of this study were to:

1. Develop and demonstrate the use of GRASP to provide for the information

needs of the MCA process, including the production of spatial predictions,

regional patterns of biodiversity, and methods to deal with biased data.

2. Provide predictions of vegetation condition and weed distributions for the

implementation of MCA in the Canterbury Region.

3. Identify the properties of underlying data, including sampling design, needed

to provide reliable predictions.

4. Investigate the characterisation of fragmentation, and the influence of

fragmentation on regional patterns of biodiversity.

3. Methods

3 . 1 S T U D Y  A R E A

The study region was defined as the entire Canterbury Region, and the portion

of the West Coast Region south of 42°37′51″ S (Fig. 3). The study region

includes a wide range of climatic and environmental characteristics, and a

correspondingly wide range of ecosystem characteristics and land uses. This

region encompasses some of the best protected ecosystems of New Zealand

(e.g. the high Southern Alps), as well as the most poorly protected (e.g. the

Canterbury Plains).

3 . 2 V E G E T A T I O N  D A T A

While a broad range of existing vegetation surveys and plots were available in

the National Vegetation Survey (NVS) databank, only a subset was used in these

analyses. New surveys were designed to fill in gaps of environmental, land-

cover and land-tenure combinations that were either unrepresented or under-

represented in the existing data.

3.2.1 Landcare Research Canterbury surveys 2000

These vegetation surveys were conducted by Landcare Research in January and

February 2000 in a region defined by a SPOT4 satellite image. Surveys were

designed to cover a range of environmental and spectral (i.e. reflectance from

SPOT4 imagery) characteristics. While these surveys covered a wide gamut of

land cover and vegetation types, in both crown and private lands, they were

limited to a 60 × 60 km square in the Canterbury plains, and thus covered only a

limited part of the study area.
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Plots were bounded 20 × 20 m recce plots with cover recorded directly in cover

percentages (not Braun-Blaunquet categories). For 1 out of 10 plots, point

height frequency methods were done on the same plots to investigate their

utility in calibrating cover estimates between observers and across cover types.

On a grid with 2-m spacing, 25 points were chosen within the plot.  For each

point on the grid, a 10 × 10 cm subquadrat was placed over the point, and any

vegetation that entered the column above this subquadrat was recorded by

species and height of intersection.

3.2.2 Landcare Research West Coast surveys 2001

These surveys were designed specifically for this project to provide additional

information on vegetation in the portion of the study area in the West Coast

Region. The purpose of the additional sampling was to gather more data in

environmental and land-cover combinations poorly represented with little

existing data, as well as to provide some new information in the more heavily

sampled areas. Sample locations were chosen subjectively, using available GIS

information on land cover, environmental domains, DOC boundaries, and

existing plot locations to position new plots. The new sample locations were

then exported as eastings and northings of the New Zealand map grid (NZMG)

and uploaded to Garmin etrex Global Positioning System (GPS) units. Field

maps were produced in a GIS by overlaying plot locations onto digital copies of

topographic maps. Field crews used the field maps to navigate near the plots

and the GPS to find the final location for sampling. The chosen plot location

was always the southwest corner of the plot, with the plot extending 20 m

north and 20 m east of this origin. In cases where the GPS was not giving

readings, azimuths and directions to plots were calculated from a nearby

landmark, and plot locations were estimated to the best possible accuracy.

Plots were bounded 20 × 20 m recce plots with cover recorded directly in cover

percentages (not Braun-Blaunquet categories). For 1 out of 5 of the plots, the

calibration plots of Landcare Research Canterbury Surveys 2000 were used. This

calibration methodology was not part of the contracted work, and the analyses

are not reported here, but these methods form a potentially valuable method for

investigating the subjectivity of cover estimates.

3.2.3 Boffa Miskell Canterbury surveys 2001

These surveys were also designed to increase information in environmental and

land-cover combinations poorly represented by existing data, as well as to

provide some new information in the more heavily sampled areas. The surveys

were performed by a number of staff of Boffa Miskell Consulting, under

contract to the Canterbury Conservancy of DOC. Because of political

considerations, no sampling was done on non-DOC land in the Canterbury

Region. Plot methods used were bounded 20 × 20 m recce plots with cover

recorded directly in cover percentages (not Braun-Blaunquet categories).

3.2.4 NVS data

Available plot locations were sourced from the NVS database (Wiser et al.

2001), selecting recce plots and grassland transects only and excluding any of

these that were considered to be not representative of the overall vegetation in

the area, such as Protected Natural Area (PNA) surveys or exclosure plots.
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Recce plots: Recce plots are either bounded 20 × 20 m plots or unbounded plots

of approximately that dimension. For some of the past recce surveys, cover

scores were recorded for (usually) six different height tiers. Other existing

recce surveys recorded only species presence (and dominance) in the tiers. See

Allen (1992) for explanation of Recce plots and methods.

Recce plots with cover scores for tiers were used in modelling variables that

require cover, including the vegetation indices that require cover listed in

Table 1, and the weed abundance models. Recce plots with presence in tiers

were only used to estimate variables that require species presence, including

vegetation indices that do not require cover and weed presence-absence

models.

Grassland transects: Grassland transect data consisted of the summarised data

from the central transect of grassland plots. The summarised data give the

frequency of each observed species for the (usually 50) circular subquadrats

along the central transect. See Wiser & Rose (1997) for details of grassland

transect methods.

While the species frequencies of grassland transects give numbers similar to

estimated cover, these numbers are not directly comparable. For instance, for

grassland transects, sums over all species of species frequencies (expressed as

percentages) often exceeded 500, while for recce plots, sums of percent cover

over species and tiers rarely exceeded 300. Therefore, grassland transects were

only used to provide species presence-absence, and were used to model the

same variables as recce plots with presence only (i.e. the vegetation indices that

do not require cover and the weed presence-absence models). It should be

noted that the presence and absence of species derived from the grassland

transects is also not directly comparable to that derived from the recce plots

because of the different plot methods and different area sampled. But because

there was so little other data available in grasslands, the use of grassland

transect data for these purposes was considered justified.

3 . 3 V E G E T A T I O N  C O N D I T I O N  I N D I C E S

A number of different vegetation condition indices were derived from the plot

data and modeled using GRASP. Table 1 defines the variables and types of

models used.

3 . 4 W E E D  S P E C I E S

A number of weed species of conservation concern were considered for

modelling. An original list of 15 species was developed in consultation with

Canterbury and West Coast Conservancies. Species were chosen to be of

specific conservation concern, but also present in the data. In some cases,

groups of species�such as willows or wilding conifers�were lumped because

of similarities amongst the species with respect to conservation problems and

control action. An additional 30 species were chosen as candidates to model,

based on general interest and availability of data. Seven of these species were

eliminated because of excessive records of unidentified congeners or other

uncertainties in identification (weed species are listed later in Table 4).
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3 . 5 S P A T I A L  P R E D I C T O R S

Spatial predictors developed for this study included a number of climatic,

landform and land cover variables, as well as fragmentation and cadastral

variables (Table 2). Fragmentation variables can be grouped into two types�

patch-based and continuous. Both types were developed for this study. Many of

the spatial predictors developed were not used in modeling, for the following

reasons.

A number of variables were excluded from analyses because they were highly

correlated with other variables. A correlation matrix of all spatial predictor

variables was produced, and variables were removed so that no variable pairs

had correlations above 0.85. Excluded variables included a number of climatic

variables, and fragmentation variables. Surprisingly, DOC300 and DOC1000

had a fairly low correlation (see Table 2).

There were a number of problems with substrate variables derived from the New

Zealand Land Resource Inventory (NZLRI) that led to them being excluded from

models. These problems included: (1) incomplete coverage for the study area

(which would have resulted in incomplete predictions for any model using those

variables), and (2) poor mapping accuracy that produced spatial artifacts at fine

spatial scales. Furthermore, much of the relevant fine spatial pattern in substrate

was reflected in differences in land cover, which was provided by the Land Cover

Database (LCDB), which provides polygon predictions of basic land cover

categories, produced by a combination of automatic and manual interpretation of

SPOT satellite imagery, with a minimum mapping unit of one hectare.

Many of the patch-based fragmentation variables had statistical distributions

that made them difficult to model, and a number of operational and conceptual

difficulties (see Section 5.5) that led to them not being included in the models.

Unfortunately, consistent remote sensing imagery, such as SPOT4 or LANDSAT

images, was not available for the entire study area, so could not be used as a

spatial predictor. However, a SPOT4 image for a portion of the study region was

used to explore the advantages of remote sensing information for this work.

3 . 6 G R A S P

Generalised Regression Analysis and Spatial Prediction (GRASP, Lehmann et al.

2002b) was used to model the variables shown in Table 1 and to make spatial

predictions of these variables. Models were usually constructed by backwards

stepwise selection, with significance tests for variable removal that varied with

model family. Forward stepwise selection was used for species abundance

models, because the models generally ended up having few variables included,

so that starting with few variables greatly reduced run time for calculating

models. Variables were allowed to have either four degrees of freedom, or one

degree of freedom.

Separate models were constructed for DOC and non-DOC land, for all variables

modelled, except weeds. Spatial predictions were made separately from the two

models, and combined at the end for a composite prediction. Finally,

predictions were masked to avoid predicting outside the range of the predictor

variables in the data.
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For each modeled variable, the following analyses were produced:

1. Graphs of the modelled variable plotted against each candidate spatial

predictor. For 0/1 variables (i.e. presence/absence variables), histograms of

the proportion of 1s were graphed against each predictor variable. For

continuous response variables, scatterplots were made of the modelled

variable against each predictor variable.

2. The final GAM model, with the curve of the partial contribution of each

predictor variable to the overall model.

3. The model validation and cross-validation results, showing the plots of the

observed versus the predicted values for each. For continuous variables, the

correlation between predicted and observed was used to assess the model. For

binomial models, the Receiver Operating Characteristic (ROC) statistic

(Fielding & Bell 1997) was used.

4. The relative contributions of each spatial predictor variable to the model.

These were done both as alone contributions and as drop contributions to the

model. The alone contribution of a spatial predictor variable shows the

deviance explained by a model with only that variable in the model. The drop

contribution of a spatial predictor variable is the difference in explained

deviance between the full final model and a model with the variable excluded.

If the variable in question is not in the final model, the drop contribution is

defined as zero.

3.6.1 Sampling densities and plot weights

Models of plot distributions were used to predict the sampling density for the

entire study region. The surface of predicted sampling density was treated as

the best post hoc estimate of the inclusion probability for each sample point. In

all subsequent analyses, the estimated inclusion probabilities were used to

weight observations. The weights were defined as the inverse of the sampling

probabilities. To keep the effective sample size equal to the number of plots,

the weights were standardised by the mean weight to achieve a mean weight

over all samples of 1.0. The overall effect of this weighting was to up-weight the

samples that were in sparsely sampled regions, and to down-weight the samples

in heavily sampled regions.

Sampling densities were modelled in relation to spatial predictor variables using

binomial models. Separate models were made for inside and outside DOC-

administered land (estate). A 1% systematic sample of the pixels of the study

area was chosen as absences and assigned a weight of 100. All pixels containing

a sample were defined as presences and assigned a weight of 1.0. All weights

were divided by the mean weight over the presences and absences to achieve

an overall weighting of 1.0. A chi-square test was used to test variable

significance, and all variables with p < 0.01 significance level were removed

from the model.

3.6.2 Vegetation condition index models

Vegetation condition indices were modelled in relation to spatial predictor

variables using the models shown in Table 1.
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3.6.3 Weed species models

Weed distributions were modelled using a composite model, using methods

similar to Welsh et al. (1996) and Pearce & Ferrier (2001). The first part of the

composite model described the probability of presence or absence of the

species. The second part of the model used only the points in which the species

was present, and modelled the cover of the species, given that it was present.

The predictions from each of these models were multiplied together to give a

composite model of weed abundance. In some cases, the abundance model

failed, in which case the weed distribution model was simply a presence-

absence model.

The sample size for the presence-absence models was all the plots, while the

sample sizes of the conditional abundance models was only the number of plots

in which the species occurred and the cover was recorded (Tables 1 and 4).

3.6.4 Prediction masks and combining predictions

All predictions were masked to avoid predicting outside the range of the data.

Separate masks were created for DOC and non-DOC land, and then applied

separately. Masks were defined by the range of each spatial predictor spanned

by the data. Pixels in the prediction grid that fell outside the range of the data

on any of these axes were masked out. While it might be possible to predict

slightly outside the ranges of the observed data, this was not done here, because

sample densities tend to decrease towards the edge of the distributions,

increasing model uncertainty at the edges of the range and making further

extrapolation unwise.

4. Results and discussion

4 . 1 G E N E R A L

The study area was 5 723 195 hectares, with 1 974 446 ha (34%) managed by

DOC for conservation purposes (called DOC land in this report). The collection

of past surveys was dominated by surveys of indigenous vegetation, especially

forest, resulting in a strong bias of the data towards areas where the vegetation

condition is good (Fig. 4). Thus, while existing surveys were perfectly valid for

their intended purpose, special techniques must be applied to use these data for

other purposes. Similar problems have been faced by the carbon monitoring

work (Hall et al. 2001) in estimating carbon storage, with a different set of

solutions used. The total number of plots was 16 672. This consisted of 1326

grassland transects, 302 recce plots from Landcare Research 2000 surveys, 328

recce plots from the surveys associated with this project, and 14 716 recce

plots from past surveys. Of the past recce surveys, 8721 plots (59%) had cover

scores. This leads to a total of 9351 recce plots with cover used to model

variables requiring cover information. Of the total number of plots, 14 272

(86%) were on lands managed by DOC, and 2400 were on non-DOC land.
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The dates of the vegetation data span more than 40 years, from the 1960s to the

present (Fig. 5). The majority of the large numbers of recce plots in indigenous

forest and grassland transect data were gathered in the 1970s and early 1980s.

The surveys in 2000 and 2001 spanned a much wider range of vegetation, e.g.

fell-fields, pasture, plantation forestry and urban areas. The 2001 surveys were

specifically designed to sample some of the under-sampled land uses and areas.

4 . 2 F I E L D  S A M P L I N G

A number of improvements could be made if more time was available for

planning and coordinating vegetation sampling. A number of difficulties were

encountered. These included sampling not starting until well into a very dry

summer, so that many annual plants had withered before sampling took place.

While attempts were made to have consistent sampling methods, there were

still variations resulting from differences in interpretation between individuals.

Consistency of plot methods would be improved if all field teams were

collected at the beginning of the season and surveyed plots together

(L. Burrows, pers. comm.).

For various reasons, it was not always possible to get to all the targeted

sampling locations. Generally, this was because the location was dangerous or

particularly inaccessible. This inability to sample all locations cannot be

avoided; its effect on the overall results is unknown, but probably small.

Figure 4.    The distribution
of a condition index across
plots. The histogram of the

proportion of species
native is dominated by the

large number of plots in
indigenous vegetation. This

highlights the difficulty of
using data from past surveys

for current applications.
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4 . 3 M O D E L E D  P L O T  P R O B A B I L I T I E S

The overall sampling probability can be calculated nonspatially by dividing the

number of plots by the number of hectares. This gives plots per hectare, or the

average probability that any one hectare is sampled. Since the probabilities are

quite small, it is often easier to discuss the inverse of the probability, or odds of

sampling (for example: 1 hectare sampled out of 500 hectares). Technically,

�odds� is usually defined as p/(1�p), so the term is used loosely here for lack of a

better word.

For the DOC land, the total area was 1 974 446 hectares, and the total number

of plots in this area was 14 272. This leads to an overall average probability of

sampling of 14 272/1 974 446 = 0.0072, or one plot sampled in 138 hectares

(1:138 odds). The mean predicted odds of sampling was close to this, at one

plot in 132 hectares (1:132 odds), with significant spatial variation, from 1:5900

to 1:31 odds. The model and contributions are shown in Figs. A1 and A2.

The total area of non-DOC land was 3 748 749 hectares, with a total 2400 plots.

This leads to an overall average probability of sampling of 2400/374 879 =

0.000640, or 1:1563 odds. The mean over the predicted grid of the probability

of sampling was close to this at 0.000698 or 1:1433 odds. The predicted odds of

sampling showed a wide spatial variation from 1:50 000 to 1:45. The model and

contributions are shown in Figs. A3 and A4.

The combined prediction of sampling probability is shown in Fig. 6. Here the

probability of sampling is given as odds of sampling. This surface is used to

predict the sampling probability for each sample point. The inverse of these

predicted probabilities is used to weight the observations in all subsequent

analyses.

Figure 5.   The distribution
of year of plots across all

samples.
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4 . 4 D A T A  U N C E R T A I N T I E S

While the modelled plot probabilities give the overall uncertainties due to

sampling intensity, there are a number of other uncertainties that affect the

data. Plot data have various positional, recording and species identification

errors, as well as random and systematic variation between observers in

estimating cover. While attempts have been made to reduce and understand

these errors, they remain poorly quantified.

The spatial information used as predictors (Table 2) also has associated

uncertainties. However, this is easier to deal with in these methods, since the

uncertainty of the spatial predictor simply degrades the relationship between

the predictor and the variable of interest. This uncertainty of the relationship is

indicated by the statistics that describe the strength of the regression, such as

the D2 statistic used for the condition indices.

Figure 6.   The modelled density of vegetation plots across the study area. The map results from
modelling the distribution of sample points seen in Fig. 3. Separate models of plot density were
calculated for inside and outside DOC-administered land (boundary shown in black). The odds of
sampling are defined as one divided by the probability that a hectare contains a plot. The odds of
sampling are the number of hectares that would be needed on average to contain one plot. When
the original sample plots are overlain onto this map, the odds of sampling are particularly useful
because they predict the number of hectares that each plot represents in the landscape. Plots in
sparsely sampled portions of the landscape represent more hectares than plots in heavily sampled
areas. These predicted odds are used to weight samples in the analyses.
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For instance, it is clear that the LCDB has many errors. However, the fact that the

LCDB is an imperfect prediction of the actual land cover does not mean that it

cannot be used, since this will be reflected in the strength of the ANOVA

embedded in the GAM regression model. The strength of the model will depend on

the strength of the relationship between the modelled variable and true land

cover, degraded by the inaccuracy of the LCBD in predicting the actual land cover.

4 . 5 F R A G M E N T A T I O N

A wide range of indices and analyses exist for analysing fragmentation and the

spatial pattern of landscapes (e.g., Gustafson 1998). Patch-based indices of

fragmentation focus on �patches� of habitat, surrounded by unsuitable habitat.

Patch-based fragmentation indices generally use polygons to depict the �good�

patches, and consider various characteristics of the polygons, such as their size,

shape, and distance to other patches. This focus on patches and polygons

produces both operational and conceptual difficulties.

The conceptual difficulties of patch-based statistics come from the artificial

depiction of the landscape into �good� patches surrounded by �bad� matrix. This

strict �good� and �bad� division of the landscape has difficulties when applied to

a wide variety of environments and land uses, as in this project, since the aim is

to understand native vegetation condition across all land uses and vegetation

types, not just across a single type, such as indigenous forest.

The operational difficulties of patch-based fragmentation statistics are also

considerable:

1. Patch statistics are extremely dependent on mapping resolution and accuracy

of the data used to define the patches. For example:

a) If small habitat fragments are ignored when drawing the polygons that

define the patches, the result will be a different patch size distribution than

there would have been had the small fragments also been mapped.

b) If a road going through the middle of a large patch is mapped, the patch size

is suddenly half of what it would have been without the road.

c) If an isthmus of forest (for example, in Lees Valley) is mapped as connected

to a large forested area, such as the forests of the central Southern Alps, its

patch size will be very large. If the area is mapped somewhat differently, and is

not connected, then its patch size will be very small.

2. The isthmus effect of 1c above exemplifies a fundamental problem with the

patch-based approach. Does it really matter if the patch in Lees Valley is

connected so that you could walk to Fiordland without leaving forest? While

this might be important for a few processes, for most matters of ecological

interest, more local effects will prevail. For example, that the isthmus of forest

is primarily surrounded by pasture or gorse, and all the disturbances

associated with these land covers, is much more important than whether it is

mapped as being connected to other places, such as the Routeburn Track.

3. Patches are not just �good� or �bad�. Native forest surrounded by scrub might

be in better condition than native forest surrounded by pasture. Patch

definition can become confusing and arbitrary, if there are many varying

habitat types.
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These problems greatly reduce the usefulness of patch-based fragmentation

indices. Because of the wide range of land covers spanned in this study, it was

not reasonable to calculate patch-based fragmentation indices for each different

land cover type, so these were calculated only for polygons of the DOC land.

Both DOCSIZE and LOGPTOA (see Table 2 for definitions) have very skewed

distributions across the data, because some very large polygons extend through

the large tracts of forest in the Southern Alps.

Because of these problems with patch-based measures of fragmentation, we

developed continuous measures of fragmentation that deal better with the

continuous nature of habitat variation and are less sensitive to details of

mapping. These measures include:

1. Distance to an edge. This measure provides a continuous measure of edge

effect. The edge could be a certain type of land cover or land tenure. This

measure reduces problems 1 and 2 above significantly, but still suffers from

Problem 3. Since this study was concerned with all land-cover types, land

cover was not used to define edges. Doing so would have required calculating

surfaces of distances to each land type, such as distance to forest, distance to

pasture, etc. Instead, a surface of the distance to the edge of the DOC land and

a surface of the distance to the non-DOC land were calculated. Variables of this

type used in this report include LD2DOC and LD2NOTDOC (Table 2)

2. Proportion of the habitat type within a neighborhood. This type of measure

gives the proportion of the pixels within a neighborhood (often a circle of a

given radius) that are of a particular type of land cover or land tenure. The

overall result is that the map cover or tenure type is essentially fuzzed out. As

in the distance measures, this measure does much to reduce problems 1 and 2

above; it is much less sensitive to the details of mapping, and also treats an

isthmus essentially the same as an island. However, this measure also still

suffers from problem 3, since it focuses on discrete patch types. For this

reason, it was not calculated for different land covers, but solely for the

proportion of pixels in the neighborhood in DOC land. Variables of this type

used in this report include DOC300 and DOC1000 (Table 2).

3. Disturbance intensity within a neighborhood. This is similar to problem 2

above, but also avoids discrete patch types and therefore addresses problem 3

as well. Here, each cover class is assigned a disturbance level, and a

neighborhood mean is then calculated around each pixel. Thus, this measure

captures whether a pixel of forest is surrounded mostly by low disturbance

types like forest, or higher disturbance types like pasture, and can easily deal

with mixes of many different land covers. Variables used in this report include

DISTURB300 and DISTURB1000 (Table 2).

All these measures give a gridded characterisation of fragmentation that varies

continuously across the landscape. They avoid some of the problems of the

patch-based statistics, and have more tractable statistical distributions.

Interpretation of the fragmentation variables and their contributions to the

models is difficult.  Certainly, some of the effect of the fragmentation variables

is to take into account positional errors in both plot locations and boundaries,

for instance in legal boundaries of parcels of DOC land. This is important

because it was clear that a plot designed to be in DOC land sometimes fell just

outside it. In this case, the fragmentation variables are helping by dealing with

some of the inaccuracies of the data, not because of ecological processes

generally associated with fragmentation.
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4 . 6 C O N D I T I O N  I N D I C E S

Summary statistics for the models of all condition indices are given in Table 3.

Land cover was the most important predictor of vegetation condition, with

environmental variables also important, and fragmentation variables having a

lesser (but statistically significant) importance (Fig. 7). The models were

generally successful in predicting the indices, with only the models for richness

variables unstable under cross-validation due to rare, extreme predictions.

Instability under cross-validation suggests that the model might have difficulties

if tested on new data, and the predictions should be treated with caution. For

five out of seven of the indices, the deviance explained was greater for non-

DOC land. This is presumably because the better overall condition on DOC land

leads to less overall variation in condition. The deviance explained is also

sensitive to sample design, and the biased distribution of plots has an influence

on these statistics that is difficult to quantify. The spatial prediction for the

proportion of species native is shown in Fig. A5, with the models and

contributions shown in Figs A6 to A9. The spatial prediction for native species

richness, combined for DOC and non-DOC land and masked to avoid predicting

outside the data range. is shown in Fig. A10. The models and contributions are

shown in Figs A11 to A14.

The construction of separate models for DOC and non-DOC land required

considerable extra effort, but had a number of advantages. First, since

conservation lands are specifically managed and protected for conservation, it

is reasonable to expect the relationships between vegetation condition and

environmental characteristics to be different inside and outside these lands.

Second, this project was developed specifically for DOC, and the relationships

within DOC land are of particular interest. Models of the entire landscape

would mix the two effects, and would be more difficult to interpret. Finally, the

model could only be improved by splitting, as this would provide extra

flexibility for the model to fit the data.

While other measures of condition may be used (e.g. see Allan 2000), these

results exemplify the use of GRASP to predict biodiversity condition for use in

systematic conservation management. Condition is a major component of site

CONDITION INDEX OUTSIDE DOC LAND INSIDE DOC LAND 

 D2 d.f. D2 d.f. 

Native species richness 

Exotic species richness 

Proportion of species native 

Cover 

Proportion cover native 

Biomass index1 

Proportion biomass native 

0.608* 

0.653* 

0.830 

0.608 

0.806 

0.641 

0.813 

41 

32 

39 

22 

28 

35 

32 

0.510* 

0.496* 

0.676 

0.395 

0.801 

0.500 

0.830 

50 

49 

46 

50 

40 

54 

42 

* Warning: model unstable under cross-validation due to rare, extreme predictions. 

TABLE 3 .    STATISTICS  FOR THE MODELS OF VEGETATION CONDITION.

SEPARATE MODELS WERE CALCULATED FOR AREAS INSIDE AND OUTSIDE DOC-

ADMINISTERED LAND.  FOR EACH MODEL,  THE DEVIANCE EXPLAINED (D 2)  AND

APPROXIMATE DEGREES OF FREEDOM (d . f . )  ARE SHOWN.
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Figure 7.   The strength of spatial variables in predicting vegetation condition. This figure shows
the deviance explained by each spatial predictor variable, averaged over all condition indices. DOC
and non-DOC land models are shown separately. See Section 3.6 for an explanation of �alone� and
�drop� contributions. The  contributions to biomass and cover were excluded from these analyses,
since they do not relate directly to indigenous condition.
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value, and the one that is most affected by conservation management.

Quantifying the difference made by conservation action requires spatially

explicit predictions of condition for entire regions. Since condition will never

be measured for every part of the region, the only way to achieve this is by some

sort of spatial prediction technique, such as demonstrated here.

4 . 7 W E E D  D I S T R I B U T I O N S

The weed models are summarised in Table 4. Of the 37 weed species modelled,

21 (57%) had successful abundance models and were thus modelled with

composite models. Some of these models should be treated with caution (as

noted in comment column of Table 4), either because the cross-validations

were driven by large values, or because of significant components of

unidentified congeners in data. Of the remaining 16, the abundance models

failed for the following reasons: model problems indicated by cross-validation

(10); no significant variables (4); no plots with cover data (1); problems with

model (1). Most of these problems can be traced to low numbers of plots with

cover data, leading to small sample sizes in the abundance models. Predicted

distributions of all weed species are shown in Fig. 8. A more detailed plot of the

composite spatial prediction for gorse, Ulex europaeus, is shown in Fig. A15,

with the models and contributions shown in Figs. A16 to A19.

A number of genera, such as Senecio and Trifolium, were not modelled,

because of large numbers of records of unidentified species. The genus

Hieracium also had a significant component of unidentified species, but three

species of Hieracium were modelled anyway, because of interest in them.

Other genera also had unidentified species, but were usually 1�10% of the

overall records.

While, overall, the weed models performed well and captured the pattern of the

species, there were some details that were not perfect. For instance, detailed

examination of the spatial predictions of presence-absence for all Pinus spp.

(PINUSALL) shows that it is not always higher than the predictions for Pinus

radiata alone, which it should be, since PINRAD is a component of PINUSALL.

There is also reason to question the fine scale details for all Salix spp., although

examination of the predictions against the data suggests that the model is fitting

the data quite well. While it is difficult without additional observations to fully

understand the problems, some of the patterns for willows along rivers are

questionable. There are also predictions for willows in some of the forestry

areas on the Canterbury Plains; however, there are sample points with LCDB

classes of plantation forestry that include willows.

The composite models used to model weed distributions were generally very

successful, and had both statistical and ecological appeal. While skewed

distributions are commonplace in species distribution data, the fact that the

data used in the model spanned very different environments and land uses

meant that the problem with skewed distributions was particularly

pronounced. The distribution of abundances was very highly skewed, with

many plots having zero cover, and a few plots with medium or high values. The

composite models dealt well with this situation by first modelling the position
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TABLE 4 .   WEED SPECIES  OCCURRENCES AND MODEL TYPES.  THE S IX -LETTER CODE USED IN NAMING GRIDS

IS  SHOWN, ALONG WITH THE NUMBER OF PLOTS IN WHICH THE SPECIES  WAS PRESENT,  AND THE NUMBER

FOR WHICH IT  WAS PRESENT AND COVER WAS RECORDED.  THE MODEL TYPES ARE EITHER A COMPOSITE

MODEL OF A PRESENCE-ABSENCE AND ABUNDANCE MODEL OR S IMPLY A PRESENCE-ABSENCE (PA)  MODEL.

IF  THE ABUNDANCE MODEL WAS NOT USED,  THE REASONS ARE GIVEN UNDER COMMENTS.  THE MOST

COMMON REASON IS  THAT THE CORRELATION BETWEEN OBSERVED AND PREDICTED VALUES UNDER

CROSSVALIDATION (CVAL)  WAS TOO LOW FOR THE ABUNDANCE MODEL.

*sign. vars. =  significant variables

SPECIES SPECIES 

CODE 

PRESENCE COVER MODEL 

TYPE 

COMMENTS 

Agrostis capillaris AGRCAP 365 547 Composite  

Anthoxanthum odoratum ANTODO 522 800 Composite  

Cytisus scoparius CYTSCO 63 73 PA cval < 0.1 

Festuca rubra FESRUB 124 235 Composite Caution, cval driven by large values 

Hieracium lepidulum HIELEP 11 12 PA cval unsuccessful, 174 records of 

unidentified Hieracium sp. 

Hieracium pilosella HIEPIL 206 263 Composite Caution, high preds for zeros 

Hieracium praealtum HIEPRA 262 352 Composite Caution, extreme prediction in cval 

Holcus lanatus HOLLAN 419 727 Composite  

Lupinus arboreus LUPARB 17 17 Composite  

Pinus radiata PINRAD 50 51 PA cval = 0.12 only MAS in model 

Pinus species combined PINUSALL 61 66 Composite  

Rosa rubiginosa ROSRUB 35 45 Composite Caution, cval driven by large values 

Rubus fruticosus RUBFRU 47 50 PA cval < 0.1 

Salix species combined SALIXALL 14 14 PA cval < 0.1 

Ulex europaeus ULEEUR 117 122 Composite  

Additional weeds      

Agrostis stolonifera AGRSTO 52 53 PA cval = 0.1 

Aira caryophyllea AIRCAR 35 53 Composite  

Bromus hordeaceus BROHOR 48 48 PA No sign. vars.* for abundance model 

Cerastium fontanum CERFON 77 232 Composite  

Cirsium arvense CIRARV 75 89 PA No sign. vars. for abundance model 

Cirsium vulgare CIRVUL 148 218 Composite  

Crepis capillaris CRECAP 193 337 Composite  

Dactylis glomerata DACGLO 165 286 Composite  

Digitalis purpurea DIGPUR 42 65 Composite  

Hypochoeris radicata HYPRAD 596 1072 Composite  

Juncus articulatus JUNART 52 52 Composite  

Juncus effusus JUNEFF 49 49 PA cval driven by large values 

Lapsana communis LAPCOM 268 269 Composite  

Linum catharticum LINCAT 78 138 PA cval < 0.1 

Lolium perenne LOLPER 101 107 Composite  

Lotus pedunculatus LOTPED 103 104 PA cval < 0.1 

Mycelis muralis MYCMUR 266 810 Composite  

Poa annua POAANN 35 110 PA No sign. vars. for abundance model 

Ranunculus repens RANREP 55 68 PA Contradictory fragmentation vars in 

ab model 

Rumex acetosella RUMACE 265 575 PA No sign. vars. for ab model, 54 

records of unidentified Sonchus  sp. 

Taraxacum officinale TAROFF 86 170 PA cval < 0.1 

Verbascum thapsus VERTHA 51 56 PA cval < 0.1 
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Figure 8.   Predicted distributions of 37 weed species. The green and red colour scheme is used for
composite models, showing a predicted percentage cover. Since the cover is summed over a
number of tiers, it can go over 100%. The grey and red colour scheme is used for presence-absence
models, and shows the probability that a species is present in a plot.



32 Overton & Lehmann�Predicting vegetation condition and weed distributions

of the presences, then modelling the abundance within those presences. This

model is also a good reflection of the most likely ecological reason for the

skewed distribution of species abundances�that quite different processes

affect habitat suitability (i.e. whether the species is present) than those that

determine its abundance within suitable habitat. Finally, the composite model

used the data efficiently, because all plots were used to model presence-

absence, while often less than 100 points were used to model abundance.

Overall, these predictions of weed distribution and abundance provide spatially

explicit estimates of conservation pressures for large areas. These are used

explicitly in MCA to assess pressures on and condition of sites. They are also the

beginning point for predicting the spread of these weeds over time, under

different management scenarios. The difference between the distributions of

uncontrolled weeds, and their effects on native biota, and weed distributions

under different control scenarios is a measure of the difference made by

conservation action.

4 . 8 C O R R E C T I O N  O F  S A M P L E  B I A S

In this study, the bias in the distribution of sample points was investigated and

corrected using two techniques. The modelling of sample density (Sections 3.6

and 4.3) showed a significant variation in sampling density across the study

region (Fig. 6), with denser sampling in areas of high indigenous vegetation

condition. If a simple mean of the plots was used to estimate the mean

vegetation condition for the region, then it would indicate that the condition of

the study region was much better than it is in reality. The first correction of this

bias was affected by weighting each plot by the inverse of its estimated

inclusion probability (see Section 3.6). This gave greater weight to plots in

sparsely sampled areas. The second correction is inherent in the regression

methods used by GRASP. The process of producing models and predicting them

onto grids means that plots are only used to predict onto the parts of the

landscape that they represent. Because of the combination of these two

corrections, the means of the predicted grid are much more accurate

predictions of condition for the region than are the means of the plots.

Overall, the plots had a higher mean vegetation condition and lower mean weed

abundance than the predicted grids, illustrating the dangers of inferences based

on found data. This is illustrated in Fig. 9, using a single condition index

(proportion of species native) and a single weed species (gorse). The plot

means are dramatically higher in both of these characteristics for the overall

study region and non-DOC land, and slightly higher for DOC land.

4 . 9 A D V A N T A G E S  A N D  L I M I T A T I O N S  O F  G R A S P

Systematic conservation management in general, and the MCA process in

particular, requires spatially explicit descriptions of the pressures, such as

animal and plant pests, affecting conservation and other land, and reporting

requires estimates of biodiversity condition, change in pressure and change in

condition. GRASP is a leading method for providing these predictions in a

rigorous and quantitative manner.
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The results of this study demonstrate the power and utility of GRASP (for the

MCA process). Using the index proportion of species native (PSppNat) as an

example, the process has provided a spatially explicit prediction of PSppNat

across the region (Fig. A5), derived from objective plot-based measurements.

The models of PSppNat show the different patterns of native vegetation and

influences on it for DOC and non-DOC lands. The utility of GRASP in dealing

with biased data is evident in Fig. 9. A simple mean of the plots would have

given a much higher overall mean for the non- DOC land than is predicted using

GRASP.

The biggest limitation of GRASP, and other empirical techniques, is the

availability of, and access to, quality data. Much of the cost of implementing

these techniques lies in providing the data they require.

Figure 9.   The correction of bias afforded by GRASP. The two axes of condition and weed
abundance show areas of higher indigenous value in the upper right, and lower indigenous value
in the lower left. A pair of points is shown for a) the overall study area, b) DOC and c) non-DOC
portions of the study area. If a simple mean of the plots was used to assess the vegetation condition
or weed abundance, then the points labeled �plot� would be the estimated condition and weed
abundance for the area. When the GRASP process is applied, and predicted onto the grid, this
corrects for the bias in plot distributions. The points labeled �predicted� give the mean of the
predicted grid for condition and weed abundance. The difference between them (arrows) show
the correction in bias provided by GRASP. In all cases, the plot means are biased towards lower
weed cover and higher condition, especially in the non-DOC areas, providing erroneously high
estimates of indigenous value.
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5. Recommendations

5 . 1 I N V E S T  I N  R I G O R O U S  M O N I T O R I N G  S Y S T E M S
B A S E D  U P O N  P R O B A B I L I T Y  S A M P L I N G
S C H E M E S  T O  P R O V I D E  T H E  I N F O R M A T I O N

R E Q U I R E D  B Y  G R A S P  T O  S U P P O R T
T H E  M C A  P R O C E S S

If conservation planning and reporting is to be based upon robust and

defensible information, then an investment is required in the underlying

information. Scattered ad hoc data collection may be sufficient for one-off or

local purposes, but accurate and reliable results at regional and national scales

requires coordinated and planned sampling, data collection and analysis. This

can only be provided by data that is gathered according to rigorous probability

sampling schemes, using well-designed measurement techniques.

5.1.1 Advantages of probability sampling

Sampling needs to be carried out rigorously, according to a defined probability

sampling scheme. Examples of probability sampling include simple random

sampling, most grid sampling, or stratified random sampling. The biggest

advantage of probability sampling schemes is that they allow unbiased and

defensible results. While the methods used here to account for the bias of found

data have been internationally reviewed, a better solution is to design reliable

sampling schemes from scratch.

5.1.2 Grid versus stratified sampling

Grid and stratified sampling are not mutually exclusive. Grid sampling is an

excellent method to provide an unbiased and overall coverage of a region.

However, with limited budgets, there can be considerable advantage in

increasing efficiency by, for example, sampling more intensively in areas of

higher interest. A grid design actually maximises the amount of travel required

to collect samples, and reducing travel time provides opportunities to gather

similar information for less cost.

Spatial information available in geographic information systems presents a

powerful opportunity for designing sampling schemes that are rigorous and

defensible as well as efficient in sampling rare or important areas and in

reducing travel costs. Cawsey et al. (2002) provides an example of spreading

plots in environmental space. The newly developed Land Environments New

Zealand (LENZ, Leathwick et al., in press) is ideal for these purposes. Recording

travel time to plots during monitoring would make it possible (after a few years)

to develop surfaces of the estimated travel time (or expense) to a location.

Within 5�10 years, optimal sampling algorithms could be developed that would

use information such as estimated travel time and intensity of interest to

provide a surface of optimal sampling intensity. This algorithm could provide

the sampling probability surface from which a random probability sampling

would choose the sample locations.
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5.1.3 Resist the seduction of found data

While past data are useful and should be used where needed, it is important to

avoid being seduced into thinking new data are not required. Past data are just

that�past. This project aimed to characterise current biodiversity, but much of

the data used was badly outdated (Fig. 5). In addition, past data are almost always

found data, and have many associated problems, as discussed in Section 1.2.

With continued investment in monitoring, a significant foundation of new data

can be developed that is better suited to the intended uses. For a new sampling

scheme, it is wiser not to worry about the configuration of existing data, since

attempting to correct bias in existing data (much of which in this study are over

20 years old) will result in the new surveys also having a bias. A better approach

is to design a new sampling scheme, and use past data as a supplement when it

is needed. Within a number of years of monitoring, there will be sufficient

information to greatly reduce the need to employ past data.

5.1.4 Permanent plots: positives and negatives

For long-term monitoring, especially of trends, permanent plots have a

powerful advantage, and a distinct drawback. Repeated measurements on plots

provide a very powerful approach to detecting trends in biodiversity

characteristics. The ability of repeat measurement on permanent plots to detect

trends has been taken advantage of in the carbon storage monitoring and

estimation of Coomes et al. (2001) and Hall et al. (2001). However, permanent,

marked plots have a major disadvantage. If characterisation of biodiversity for a

region is based on a number of known, permanent plots, the most cost-effective

means to improve the �score� for an area is to manage the plots alone, at the

expense of the surrounding areas. An example where the advantages and

disadvantages of permanent plots have been recognised is the national

monitoring protocol for possum residual trap catch (NPCA 2001). Repeated

measurements on the same trap lines are generally avoided to prevent possum

trapping and poisoning contractors from focusing on the locations of the trap

lines. One potential solution to the problem is to change some proportion (say

25%) of the permanent plots every year (Rob Allen, pers. comm.). This

appealing solution would allow remeasurements on many plots, as well as

measurements from a significant number of new plots.

5.1.5 Sample both DOC and non-DOC land

Conservation is about private land as well as the land managed by DOC for

conservation. Making effective conservation decisions for a particular area also

requires information about what is happening in all the surrounding land.

Incentives and other programmes for promoting conservation on private land

ultimately requires information about the status and trends of biodiversity on

this land at regional and national scales. Thus sampling must include plots on

non-DOC land.

5.1.6 A suggested sampling scheme

A long-term monitoring scheme should begin from first principles, informed

but not constrained by past efforts, with methods and sampling schemes

designed to address specified issues (see also Allen 2000 for discussion in a New
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Zealand context). Ongoing investment in monitoring should be used to develop

this scheme. The sampling design should have randomly chosen or grid

sampling locations, and sampling probabilities for each sample should be kept

and used in analyses.

An excellent sampling scheme for biodiversity monitoring could be constructed

by using following approach, which is similar to that proposed by Bellingham,

et al. (2000). A base sample could be evenly spread across the region of interest

(e.g. a conservancy, or all of New Zealand). This base sample could be collected

using either a systematic grid survey, or a simple random sample. Then an

additional random sampling scheme could be carried out to sample more

intensively in areas of higher interest. These areas of higher interest may be

defined from information gained in the base sampling, from earlier sampling, or

from independent sources of information (Fig. 10). For instance, for reporting

on conservation outcomes from expenditure on conservation, it may be

desirable to sample more intensively (and thereby gain more information) in the

areas where conservation operations are occurring, and money is being spent.

There are a number of advantages to such an approach. The base sample across

the region would give an overview of the region, and ensure all areas were

sampled. The additional samples would allow rare environmental or land-cover

combinations to be sampled, or greater sampling intensity in areas identified as

of particular interest. The base sample and any additional samples could be

combined in analyses, since each sample point would have known sampling

probability. Auxiliary samples may measure the same parameters as the base

sample, or different methods could be designed to capture different

information.

As discussed in this report, an excellent way to define the auxiliary samples is to

use probability sampling surfaces. The advantage with this approach is that

decisions and compromises made in the process will only affect the efficiency

of the sample. The ability of the resulting survey to provide rigorous estimates

will not be compromised because each sample will retain its sampling

probability. The sampling probability surface and the sample locations would

then be included as part of the metadata.

In addition, about 5�10% of the samples should be randomly audited for quality

control purposes. The simplest audit is a sample remeasurement by an

independent agent. The hard reality is that without these audits, contractors

realize, sooner or later, that they do not actually have to measure plots.

5 . 2 S T A N D A R D I S E  A N D  I M P R O V E  V E G E T A T I O N

P L O T  M E A S U R E M E N T S

It may well be that newly designed monitoring systems use new plot designs.

However, a number of improvements on the current recce plots became

apparent in this study.

One advantage of using existing methods, such as recce plots, for sampling is

that a methodology for measuring the plots exists, and the results from these

plots can be compared and combined with past information. One disadvantage
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is that there are a number of (to the naïve observer, peculiar) preconceptions as

to what the plots represent and how the surveys are carried out. The idea that

recce plots characterise a homogeneous vegetation should be abandoned.

Recce plots should have defined boundaries and simply record the vegetation at

the chosen sample location. Heterogeneity in vegetation is inevitable, and

should be accepted. There is no other way to view recce plots when plot

locations are chosen prior to carrying out field work. Braun Blanquet cover

scores or other schemes should be abandoned and cover should be recorded

directly. Cover categories cannot but degrade the accuracy of cover

assessments. Under 1%, much resolution is lost with the bottom category of the

Braun Blanquet scheme (e.g. in a 20 × 20 m plot, 1% cover is 2 × 2 m and many

species are represented by a single individual). In addition, cover categories

give a bizarre and artificial distribution of data and require conversion to actual

cover for analysis. Most workers familiar with Braun Blanquet resist the change

to direct estimation, but eventually find it almost as easy and more precise.

As with all field work, no matter how much attention is paid to detailing the

method of implementation, there is a surprising amount of interpretation and

subjective decision-making involved in applying methods in the field. Cover

Figure 10.   A combined grid and stratified design to sample biodiversity. In this example, a total of
abouut 600 sample points is divided equally between a grid sample and a stratified sample. The grid
sample is on a 14-km grid and provides an overall sample of the region. The stratified sample is
designed to provide more information on rare environments and land covers, and small parcels of
conservation land. Samples in the stratified design are clumped to reduce travel time and cost. The
relative number of plots in grid and stratified designs can be adjusted to balance the competing
constraints of generality and efficiency.
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estimates, in particular, have a considerable subjective element. Even the

definition of cover has a surprising range of interpretations and needs to be

carefully detailed.

As part of the Landcare Research 2000 and 2001 sampling associated with the

data used in this project, we have trialled the use of point-height-frequency

methods for calibrating recce plots, but these data have not been properly

analysed. While these methods have promise, it is clear from the outset that

they are not a simple solution. For instance, it is known that the relationship

between point-height-frequency methods and cover depends on the grain of the

vegetation, and will therefore differ between grasslands and forests.

Other approaches to standardising the recce plots involve assembling the survey

crews at the beginning of the season and carrying out repeat measurements with

the different crews on the same plots under different vegetation configurations.

(Larry Burrows, pers. comm.). This approach has great promise for reducing the

variation between crews within a year, but does not help for the next year, unless

crews or sampling coordinators are carried over.

5 . 3 D E V E L O P  C O M B I N E D  B I O D I V E R S I T Y
I N F O R M A T I O N  S Y S T E M S  T H A T  U T I L I S E  A  F U L L

R A N G E  O F  I N F O R M A T I O N ,  W I T H O U T  M I X I N G
A N D  C O N F U S I N G  T H E  D I F F E R E N T  T Y P E S

While probability sampling methods have many advantages, they also have

shortcomings. Probability surveys are excellent at providing an unbiased and

overall characterisation of a region, but they may miss rare events and,

generally, cannot incorporate existing knowledge. These shortcomings led

Overton et al. (2000, 2002) to develop hybrid methods of biodiversity

assessment that combine probability sampling with descriptive surveys. This

approach could be generalised to a combined approach for biodiversity

assessment that could utilise information of a range of quality and rigor without

compromising the better information.

There are several arguments for this sort of system. The sheer range of interests

managed by conservation means that no one approach to providing information

will suit all purposes. Furthermore, the diversity and number of interests, and

the potential expense of monitoring and measuring them all, suggest that, at

least for some, the information available will be unreliable or based on expert

judgment. There may, however, be value in capturing as much of that

information as possible and using it effectively.

The predictions of weed abundance and vegetation produced in this report are

based on fairly restrictive and expensive data. The methods use quantitative

plot data, and work best to predict the regional patterns of the entities that are

best represented in the data, such as the condition indices and the more

common weeds and native plants. Restriction to the most reliable and rigorous

data is an effective way to get the most rigorous estimates. However, this also

results in the avoidance of making predictions for features where there is not

solid information. For instance, in this project, we have avoided making
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predictions for some weed species for which there was a large component of

unidentified congeners in the data. This prevents some of the potential

problems of poor predictions for those species, but it does not address the need

for the best spatial estimates of those species. If these species are those for

which control programs are being carried out, there may be a very real need to

make the best prediction possible for those species, keeping in mind that the

information is less robust than for species that are reliably identified.

This argument can be taken a step further to consider attributes that are

important, but rare across the landscape. Continuing with the weed example,

there might be a new weed, which is poorly identified or has only been

recorded from scattered locations, which would not have reliable data for the

GRASP process demonstrated here. There might, however, be a very real need

for spatial estimates of the weed�s distribution. At the very minimum, it would

be useful to capture data on the locations in which it has been recorded. Note

that this process is fraught with difficulties; e.g. many rare weeds may not be

identified, others may be over-reported; and some common weeds may be

under-reported. Despite all these problems, systematic conservation

management will still require information on these sorts of weeds if decisions

about their control are to be made objectively and the effects of control are to

be quantitatively reported.

There is always the allure of using other sorts of data. For instance, if DOC

workers notice a new weed in a new area, it would be very useful to use that

information, even if the observation is not part of a formally designed survey.

For instance, if Jill Bloggs says she knows there are heavy infestations of this

weed at this and that site, it would be useful to have this information included

in the decision-making process. But use of this sort of information should not

dilute or pollute the predictions made by more quantitative methods and more

rigorous data. It would be ideal, therefore to be able to combine different sorts

of information to develop an overall picture of the biodiversity condition.

This problem provides exactly the sort of impetus for the hybrid approach to

biodiversity assessment used by Overton et al. (2000, 2002) in characterising

the biodiversity of roadsides. This approach can be generalised into a staged

system that uses information at different degrees of rigour for different

purposes. If information for a particular purpose was not available or feasible at

a more rigorous level, then a more general level might be used. Furthermore,

auxiliary sources of information might be used for different purposes.

While the exact configuration of the system and its components would require

development, some examples of levels that might be used are (in decreasing

order of rigour):

1. Spatial predictions based upon plot data from rigorously designed probability

surveys

2. Spatial predictions based upon existing data

3. Data captured during conservation work

4. Environmental envelopes based on presence-only data and weed observations

5. Descriptive information of sites and areas

6. Expert knowledge and opinion

Spatially explicit predictions of pest abundance suitable for use in MCA and

systematic conservation management can be derived from Levels 1, 2, and 3 and

informed by level 6. GRASP has considerable advantages for introducing rigour

and reproducibility into Levels 1 to 3.
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Appendix 1:
Sample predictions and
analyses

Figure A1.   Models of plot sampling density for DOC land.

Figure A2.   Contributions to the models of plot sampling density for DOC land. The alone
contribution for a predictor variable is defined as the amount of deviance explained when that
predictor is alone in the model. Drop contributions are defined as the drop in deviance when the
predictor is removed from the full, final model.



43Science for Conservation 220

Figure A3.   Models of plot sampling density for non-DOC land.

Figure A4.   Contributions to the models of plot sampling density for non-DOC land.
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Figure A5.   Prediction of the proportion of species native.
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Figure A6.   Model of the proportion of species native for DOC land.
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Figure A7.   Contributions for the model of the proportion of species native for DOC land.

Figure A8.   Model of the proportion of species native for non-DOC land.
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Figure A9.   Contributions for the model of the proportion of species native for non-DOC land.
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Figure A10.   Prediction of native species richness.
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Figure A11.   Model of native species richness for DOC land.
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Figure A12.   Contributions for the model of native species richness for DOC land.

Figure A13.   Model of native species richness for non-DOC land.
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Figure A14.   Contributions for the model of native species richness for non-DOC land.
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Figure A15.   Prediction of the abundance of gorse, Ulex europea.

Figure A16.   Model of the presence-absence of gorse for DOC and non-DOC land.
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Figure A17.   Contributions for the model of presence-absence of gorse.

Figure A18.   Model of gorse abundance, performed over all sites where gorse was present. Plot
methods included recording cover scores.
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Figure A19.   Contributions for the model of gorse abundance for sites where it was present.
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Glossary

Alone/drop contributions

These are two different ways of looking at the importance, to the model, of

each spatial predictor variable. The alone contribution of a spatial predictor

variable shows the deviance explained by a model with only that variable in the

model. The alone contribution is calculated by having no variables in the model,

putting each variable into the model by itself, and recording the amount of

deviance explained. The drop contribution of a spatial predictor variable is the

difference in explained deviance between the full final model and a model with

the variable excluded. The drop contribution is calculated by taking the final

model, and dropping out single variables, one at a time, and recording the

decrease in the amount of deviance explained. If the variable in question is not

in the final model, the drop contribution is defined as zero. The drop

contribution of a predictor variable is often much smaller than the alone

contribution, because of the redundancy between predictor variables.

Backwards/forwards stepwise selection

The choice of variables to include in multiple regression models is often made

by stepwise selection, using a set of criteria to determine whether predictor

variables are included in the model. In forwards stepwise selection, the most

important variable is added first, followed by the next most important variable,

step by step, until all variables that satisfy the criteria are included in the model.

Backwards stepwise selection begins with all the variables in the model, and

drops out variables that do not satisfy the criteria, starting with the weakest

variable, step by step, until only the variables that satisfy the criteria are

included in the model.

Generalised information

Generalised information is derived from more detailed underlying information

or data. Examples of generalised information include theories or models which

may capture the overall or average behavior of a system, and classifications such

as vegetation classes and environmental and biotic domains that generalise the

pattern of many underlying species into broad classes of biotic composition.

GRASP is an important method for generalising information. See also

Information pyramid.

Inclusion probabilities

Inclusion probabilities are a crucial part of probability samples. The inclusion

probabilities give the probability that any element of the target population is

included in the sample. For a simple random sample, the inclusion probabilities

are all equal. For stratified designs, some parts of the target population have

higher probabilities than others. The inclusion probabilities are used to weight

the observations in analyses, and are thus an important part of metadata.
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Information pyramid

Information pyramids represent a paradigm for informed ecosystem

management (Overton et al. 2002). Raw data forms the base of the pyramid.

This data is integrated with other forms of data and generalised to produce the

derived information required for informing ecosystem management. Results at

one level are used as input for higher levels of integration and generalisation.

Integrated information

Oftentimes, the process of generalising information requires that different sorts

of information be integrated. In this report, we integrate biotic information

with environmental information to produce spatial predictions. See also

information pyramid.

Masked/masking

For spatial predictions, a mask identifies areas for which the prediction is

considered invalid or unreliable. In this project, predictions are masked to avoid

predicting outside the range of the data available for the model.

Metadata

Metadata is data that describes data. Often, this can consist of information on

the people that collected or entered the data, or the methods used to generate

the data. Metadata should also include information on the sampling design used

to collect the data.

Probability sampling

Sampling designs in which the locations or elements to sample are chosen

according to a random sampling scheme. Examples of probability sampling

include simple random sampling, stratified random sampling and most grid

sampling. The use of probability sampling can ensure that the results are

rigorous and unbiased.

Regression modelling/analysis

An analysis that produces statistical relationships between a response variable

and one or more predictor variables. Examples of regression modeling include

simple linear regression, generalised linear models (GLMs), and generalised

additive models (GAMs). A multiple regression model regresses a single

response variable against a number of predictor variables.

Spatial prediction

A paper or digital map that gives predicted values across a region. In this study,

the spatial predictions were made in a GIS using the GRASP models, and give the

predicted values for every 100 m pixel of the study region, except for the pixels

that are in the areas that are masked out.

Spatial predictors

See variables, spatial and variables, predictor.
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Spectral characteristics

Used in this report as a generic way of referring to remote sensing information.

This is often reflectances in different wavelength bands, with values for each of

the pixels in the image.

Splus

A statistical package, with a programming language, for advanced statistical

computing (Chambers & Hastie 1993).

Surface

In this study, surfaces give a predicted value of a variable across geographic

space, and are stored in a GIS. Surfaces consist of many pixels, with a value of

the surface for each pixel. For instance, the surface of mean annual temperature

used here gives a predicted value of temperature for every 100 m (1 ha) pixel of

the study region. Surfaces are also spatial predictions, because the variable has

not been measured for every pixel of the surface. However, they are spatial

predictions that were produced at lower levels of the information pyramid, and

hence become spatial predictor variables for the current use.

Variables

Cadastral�Spatial variables that show land ownership.

Categorical�Variables that have discrete categories, or classes, such as land

cover.

Continuous�Variables that vary continuously, such as temperature.

Fragmentation�Variables that capture the patchy distribution of habitats

across the landscape, and the influences of humans on landscape pattern. Patch-

based indices of fragmentation focus on �patches� of habitat, surrounded by

unsuitable habitat. Continuous measures of fragmentation developed in this

report deal better with the continuous nature of habitat and give a

characterisation of fragmentation that varies continuously across the landscape.

Response�In a regression model, or spatial prediction, this is the variable that

is being predicted. In the case of this report, response variables include the

condition indices and the weed presence/absences or abundances

Predictor�Variables that are used to predict the response variables. They are

the variables on the x-axis of the regression models. Oftentimes, predictor

variables were response variables at lower levels of the information pyramid,

and become predictors at higher levels.

Spatial�Variables for which a surface exists in a GIS. Spatial predictor variables

include the variables listed in Table 2. Response variables also become spatial

variables once spatial predictions are made of them.


	Abstract  
	1. Introduction and background 
	1.1 Generalised Regression Analysis and Spatial Prediction (GRASP) 
	1.1.1 GRASP and monitoring programmes 

	1.2 Sampling methods and found data 
	1.2.1 Probability sampling 
	1.2.2 Sampling design 
	1.2.3 Found data 


	2. Objectives 
	3. Methods 
	3.1 Study area 
	3.2 Vegetation data 
	3.2.1 Landcare Research Canterbury surveys 2000 
	3.2.2 Landcare Research West Coast surveys 2001 
	3.2.3 Boffa Miskell Canterbury surveys 2001 
	3.2.4 NVS data 

	3.3 Vegetation condition indices 
	3.4 Weed species 
	3.5 Spatial predictors 
	3.6 GRASP 
	3.6.1 Sampling densities and plot weights 
	3.6.2 Vegetation condition index models 
	3.6.3 Weed species models  
	3.6.4 Prediction masks and combining predictions 


	4. Results and discussion 
	4.1 General 
	4.2 Field sampling 
	4.3 Modeled plot probabilities 
	4.4 Data uncertainties 
	4.5 Fragmentation  
	4.6 Condition indices 
	4.7 Weed distributions 
	4.8 Correction of sample bias 
	4.9 Advantages and limitations of GRASP  

	5. Recommendations 
	5.1 Invest in rigorous monitoring systems based upon probability sampling schemes to provide the information required by  GRASP
	5.1.1 Advantages of probability sampling 
	5.1.2 Grid versus stratified sampling 
	5.1.3 Resist the seduction of found data 
	5.1.4 Permanent plots: positives and negatives 
	5.1.5 Sample both DOC and non-DOC land 
	5.1.6 A suggested sampling scheme 

	5.2 Standardise and improve vegetation plot measurements 
	5.3 Develop combined biodiversity information systems that utilise  a full range of information, without mixing and confusing t

	6. Acknowledgments 
	7. References 
	Appendix 1
	Glossary 

