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Rat prints in tracking tunnels at Karioi Rahui, comparing
treatment with non-treatment areas.
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Mouse prints in tracking tunnels at Karioi Rahui,
comparing treatment with non-treatment areas.
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treatment with non-treatment areas.
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FIGURE 5. FREQUENCY OF RAT AND MOUSE PRINTS ON PAPERS FROM TRACKING
TUNNELS SET IN TREATMENT AND NON-TREATMENT SITES AT KARIOI RAHUI,
OHAKUNE. THREE EXPERIMENTAL TRIALS (RUNS) OF VARYING LENGTH WERE SET,
AT TWO WEEK INTERVALS, USING 15 TUNNELS IN EACH SITE. (NOTE: THREE
NIGHTS TRACKING FOR RUN 1, TWO NIGHTS TRACKING FOR RUNS 2 AND 3.)

Discussion

This study may be confounded by the presence of rats and mice in both the
treatment and non-treatment sites, although rat density was apparently low in
the treatment site. In another study, mouse numbers have been observed to
increase (following initial declines) after poisoning, regardless of the toxin or
poisoning method (aerial or bait stations) (Innes et al. 1995). In that work, the
increase in mouse numbers was greater in sites where ship rats had been most
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effectively removed, implying that mice may survive better when inter-specific
competition and predation from rats is reduced. This might explain our
observation of high mouse presence in the treatment site at Karioi. Therefore,
while the removal of possums and rats would be expected to have a benefit to
invertebrate populations, predation pressure on invertebrates may be
maintained by an increased abundance of mice, reducing the actual benefits of
the poisoning operation to invertebrates.

Our invertebrates capture data tended to support the contention that rodents
were still having an effect as predators in the treatment area. Both pitfall and
malaise trap samples showed significant differences in the numbers of
individuals in taxa which were collected in the treatment and non-treatment
sites. However, the trends are not strongly defined, with some taxa occurring
more frequently in the treatment area, and others more frequently in the non-
treatment area. Araneae and Coleoptera >5 mm were scored more frequently in
the non-treatment site in both pitfall and malaise samples, and adult Lepidoptera
occurred more frequently in the treatment samples of both pitfall and malaise
traps. Other taxa were recorded less consistently in the two trap types, and no
real trend in terms of invertebrate abundance in one site or the other can be
determined.

This situation may be the result of mice numbers not dropping because the
poison bait stations were spaced too far apart relative to mouse home range
size. Thus mice may still persist at densities sufficient to remain as significant
predators of invertebrates. This scenario is supported by the ambivalent results
from the statistical comparisons where significant differences occurred, but not
necessarily with higher numbers in the treatment area, as one might expect if
rodent predation was reduced by poisoning.

In order to establish an experiment in which the effects on invertebrates of
rodent removal can be tested, rodent populations must be further reduced, and
a poisoning regime which is effective on both mice and rats must be used.
However, for research to be generally applicable, the poisoning programme and
resulting changes in pest mammal abundance must represent the results of a
typical poison operation. Creating an atypical situation, while showing the
theoretical advantages for invertebrates if possums and all rodents were
removed, would not tell us the actual benefits of mammal control operations in
New Zealand.

The presence of rodents, especially mice, in the treatment site, and the small
scale of the study, mean that we have not recorded data from which it is
possible to gather evidence of the effect of rodent and possum removal on the
abundance of invertebrates. Hence the pilot study was a trial of the
methodology, and enables refinement of sampling methods for future work.



Recommendations for future
research

Comparisons of invertebrate abundance and diversity between randomly
selected treatment and non-treatment areas needs to be carried out in advance
of the application of toxin—probably over two seasons. Further comparisons of
invertebrate abundance and diversity between the treatment and non-treatment
sites would be required for at least two years during toxin application (via
poison bait stations which are accessible to all rodents as well as possums)
followed by at least two years monitoring after the application of toxin. This
will enable any changes in invertebrate numbers to be attributed to the
reduction of pest mammals. The investigation of benefits of pest mammal
control operations to invertebrates is therefore a long-term research project,
requiring six years of work in the field.

In particular, it seems that longer sampling periods (perhaps six weeks) are
required in beech forest to adequately sample large-bodied invertebrates using
pitfall or malaise traps. Techniques such as “fences” which increase the catch
area of pitfall traps or large diameter traps should be used. These have been
shown to increase the proportion of larger beetles which are collected
(Southwood, 1978).

New sampling methods may be required, especially if particular invertebrate
species are found to be preferred in the diet of rodents and possums.
Standardised techniques which involve manual searching should be used. The
data yielded would be catch rates per unit effort. Pitfall and malaise trapping
would need to be verified as methods which actually capture the invertebrate
species which were found in rodent and possum diets.

Mammal species must be monitored using standard techniques throughout the
invertebrate study, so changes in invertebrate density can be correlated with
changes in mammal numbers. In addition, diet studies of rodents and possums
will be required to ensure that the invertebrates sampled were actually prey
items.

In this study invertebrates were generally not sorted to species level. Thus
differences in species diversity may not have been apparent between samples
because so many taxa were lumped together. Future work needs to compare
changes in diversity (species composition) between sites as well as biomass.
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