
Climatic prediction of seedfall 
in Nothofagus, Chionochloa 
and Dacrydium cupressinum

Adrian Monks

DOC RESEARCH & DEVELOPMENT SERIES 276

Published by

Science & Technical Publishing

Department of Conservation

PO Box 10420, The Terrace

Wellington 6143, New Zealand



DOC Research & Development Series is a published record of scientific research carried out, or advice 

given, by Department of Conservation staff or external contractors funded by DOC. It comprises reports 

and short communications that are peer-reviewed.

Individual contributions to the series are first released on the departmental website in pdf form. 

Hardcopy is printed, bound, and distributed at regular intervals. Titles are also listed in our catalogue on 

the website, refer www.doc.govt.nz under Publications, then Science & technical.

©  Copyright August 2007,  New Zealand Department of Conservation

ISSN 1176–8886 (hardcopy)

ISSN 1177–9306 (web PDF)

ISBN 978–0–478–14267–9 (hardcopy)

ISBN 978–0–478–14268–6 (web PDF)

This report was prepared for publication by Science & Technical Publishing; editing and layout by 

Amanda Todd. Publication was approved by the Chief Scientist (Research, Development & Improvement 

Division), Department of Conservation, Wellington, New Zealand.

In the interest of forest conservation, we support paperless electronic publishing. When printing, 

recycled paper is used wherever possible.



CONTENTS

Abstract  5

1. Introduction 6

2. Methods 7

2.1 Seed data 7

2.2 Climate data 8

2.3 Analysis techniques 8

2.3.1 Nothofagus and Chionochloa 8

2.3.2 Rimu 12

2.3.3 Model validation 12

2.4 Phenology, selection of environmental predictors and a priori 

model specification 13

2.4.1 Nothofagus 13

2.4.2 Chionochloa 15

2.4.3 Rimu 16

3. Results 18

3.1 Nothofagus 18

3.2 Chionochloa 23

3.3 Rimu 25

3.4 Predictions for 2004/05 27

3.4.1 Nothofagus 27

3.4.2 Chionochloa 27

3.4.3 Rimu 27

4. Discussion 28

4.1 Uncertainty in the predictions 28

4.2 Species-specific predictions and the use of thresholds 29

4.3 Rimu predictions 30

4.4 Use of the models within a larger framework 30

4.5 Importance of seedfall monitoring 31

5. Recommendations 32

6. Acknowledgements 32

7. References 33

Appendix 1 

Data used in the analysis 36





5DOC Research & Development Series 276

Climatic prediction of seedfall 
in Nothofagus, Chionochloa 
and Dacrydium cupressinum

Adrian Monks

Landcare Research, Private Bag 1930, Dunedin 9054, New Zealand

Email: MonksA@landcareresearch.co.nz

  A B S T R A C T

Mast seeding in Nothofagus (southern beech), Chionochloa (snow tussock) 

and Dacrydium cupressinum (rimu) is a significant conservation issue in 

New Zealand because of the irregular pulses of nutrients it brings to the 

animal populations within these systems. Climatic models were developed, 

which were intended to give timely and accurate predictions of seedfall 

in these plants, to forewarn conservation managers about changes in these 

systems. The models for Nothofagus and Chionochloa were based on 

multiple long-term datasets, primarily from the South Island, and climate 

records from nearby climate stations. The rimu models were based on a 

single dataset from Wanganui State Forest, Westland. The best Nothofagus 

and Chionochloa models correctly classified seedfall events as being either 

high or low 79% and 76% of the time respectively. High seedfall years were 

correctly classified with an accuracy of 80% for Nothofagus and 70% for 

Chionochloa. For rimu, it was not possible to satisfy the dual criteria of 

timely and accurate prediction: the model that gave the best fit to the 

data and provided good prediction when applied to a small dataset from 

Codfish Island (Whenuahou) would only enable predictions to be made 

1–2 months before rimu fruits are falling from the trees. For all species, 

models performed better when previous seedfall was included as a predictor. 

Therefore, for the implementation of these models, it is essential that seedfall 

monitoring continues at sites where prediction is required. In recognition 

of the uncertainty in the model predictions, it is recommended that these 

models be implemented within a larger management framework that is 

flexible enough to allow rapid detection of failures in the model predictions 

followed by appropriate action.
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 1. Introduction

Mast seeding can be defined as the ‘synchronous, highly variable seed 

production among years by a population of plants’ (Kelly 1994). This 

definition describes a population-level pattern of seed production. Colloquially, 

however, the term ‘mast’ is commonly used to describe particular years 

of high seedfall. While it is convenient to identify mast and non-mast 

years, these are not precise terms, because inter-annual variation in seed 

production is a continuous variable; consequently, the magnitude of seedfall 

that qualifies as a mast event remains arbitrary. Few plant species have a 

truly bimodal pattern of seedfall, where years can be clearly categorised 

as mast or non-mast years (Kelly 1994). However, among species that we 

identify as mast species, years with high seedfall are uncommon relative 

to years with low seedfall. For example, in Nothofagus, seedfall exceeds 

1000 seeds/m2 in only 26% of years, and is greater than 2000 seeds/m2 in 

only 20% of years, with the median seedfall being only 74 seeds/m2. Climate 

is the primary driver of reproductive output in mast species, playing a critical 

role in synchronising flowering within and between populations (Kelly 1994; 

Kelly & Sork 2002).

High seedfall events represent a massive pulse of nutrients into the 

ecosystem. Seeds are particularly high in nitrogen, digestible energy and 

trace elements (e.g. Murphy 1992). Animals can assimilate these nutrients 

relatively easily; thus, these pulses have important implications for animal 

population dynamics. In New Zealand, much of the conservation interest 

in masting is concerned with rodent population responses to high seedfall 

events. Mouse (Mus musculus) population increases are associated with 

high seedfall events in Nothofagus, both directly through feeding on 

the seeds (King 1983; Choquenot & Ruscoe 2000; Blackwell et al. 2003) 

and/or indirectly through feeding on the litter-dwelling invertebrate 

population, which increases following flowering (Alley et al. 2001). The 

evidence linking rat (Rattus spp.) population increases to masting in 

Nothofagus is more ambiguous (M.G. Efford, University of Otago, pers. 

comm.), although there is some evidence that rat populations also respond 

in some instances (Blackwell et al. 2003; Dilks et al. 2003). Current research 

is investigating whether rodents also respond to mast years in Chionochloa 

grasslands (Deb Wilson, Landcare Research, pers. comm.). Not only do high 

densities of rodents impact indigenous biota directly (reviewed by Innes 2001; 

Ruscoe 2001), but these seedfall-induced rodent eruptions will also result in 

increased densities of stoats (Mustela erminea). Conservation managers are 

particularly concerned about these stoat eruptions and the consequent impact 

they have on their indigenous secondary prey, such as birds (reviewed by 

King et al. 2001).

The breeding of some indigenous birds is also linked to high seedfall events. 

Since conservation management was initiated in the 1960s, kakapo have 

only bred during rimu-high-seedfall years (Elliott et al. 2001); thus, in situ 

monitoring of developing rimu fruit is currently used by the Department 

of Conservation (DOC) to predict breeding years for this species. Similarly, 
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breeding by kaka (Nestor meridionalis) (Wilson et al. 1998) and parakeets 

(Cyanoramphus spp.) (Elliott et al. 1996) is associated with high seedfall 

in Nothofagus.

Clearly, it is imperative that conservation managers be able to predict high 

seedfall events before they happen, so that the necessary actions can be 

taken ahead of time to facilitate intervention in these systems. The aim of 

this research was to produce climate-based predictive models of seedfall 

for Nothofagus, Chionochloa and Dacrydium cupressinum (rimu). In this 

report, these models are presented and evaluated.

 2. Methods

 2 . 1  S E E D  D A T A

Fifty-two long-term seedfall datasets (Appendix 1) were collated: Nothofagus 

(25 datasets, ranging from 3 to 38 years), Chionochloa (23 datasets; 

11–31 years, but 20 of these came from only two locations), and rimu 

(4 datasets; 7–33 years). All Chionochloa data and the majority of data for 

the other species were collected in the South Island, which may limit the 

models’ predictive power at North Island sites.

Nothofagus and rimu seedfall was measured as the total number of seeds 

per square metre. It could be argued that viable seed is a better predictor 

of animal responses to a seedfall event, because this seed contains the 

nutritious endosperm. However, viable seed data were not always reliably 

collected, and the distinction between viable and non-viable seed is a 

minor one with respect to this analysis, because the amount of viable seed 

was strongly correlated with total seedfall (Nothofagus: r = 0.89, n = 176; 

rimu: r = 0.94, n = 16). All Chionochloa data were expressed as inflorescences 

per tussock (infl/t). Although the number of seeds per floret also varies 

between years, being highest during high-flowering years and very low 

during low-flowering years (Kelly & Sullivan 1997), individual seed data are 

not collected routinely during monitoring of flowering in Chionochloa. In 

all cases, the site mean, averaged over all the sampling units (seed traps 

for Nothofagus and rimu, and tussocks for Chionochloa), was used in the 

analyses. While this approach means that the within-year variability of the 

measurements from each site could not be modelled, this was balanced 

by the practical reality that individual sampling unit information was not 

always available. All seed and flowering data were log transformed prior to 

analysis.
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 2 . 2  C L I M A T E  D A T A

Climate data were sourced primarily from the National Climate Database 

(National Institute of Water and Atmospheric Research, Wellington), with 

additional data being sourced from the Takahe Valley climate station, which 

is maintained by DOC, Te Anau. Each seed site was matched with the nearest 

climate station that had the appropriate records. In some instances, different 

sources were used for the rainfall and temperature data, when it was not 

possible to get both sets of data from the same site. In most cases there was 

a distance of several kilometres or more between the location of the seed 

measurements and the point of collection for the climate data. Under these 

circumstances, the actual values at the site of seed measurement are likely 

to have differed from the climate station values, due to differences in factors 

such as altitude, aspect and topography. To minimise this discrepancy, the 

climate data were standardised as deviations from the long-term mean, by 

subtracting the mean value of the variable for the climate station from each 

individual observation. In most cases, mean values were based on at least 

40 observations.

Degree days were calculated for November through to April using a 6ºC 

growing threshold (Thornley & Johnson 1990; Rees et al. 2002). Before 

calculation, the unstandardised temperature data were corrected for altitude 

at a rate of 0.6ºC per 100 m difference in altitude between the climate station 

and the seedfall site. These values were also then expressed as deviations 

from the long-term degree-day means.

While climate stations with very incomplete records were not used in the 

analysis, some stations only had a few observations missing, and the data 

were otherwise complete enough not to justify using an alternative station. 

In these instances, the missing values were predicted from linear models 

relating these data to those from the next-nearest climate station.

 2 . 3  A N A L Y S I S  T E C H N I Q U E S

All analyses were carried out in S, either using S-PLUS 2000 (Mathsoft Inc., 

Seattle, WA) or the open source code, R (http://cran.r-project.org).

 2.3.1 Nothofagus and Chionochloa

The analysis of the Nothofagus and Chionochloa data followed the information 

theoretic paradigm advanced by Burnham & Anderson (2002). Briefly, this 

philosophy advocates a priori specification of a set of plausible models based 

on hypotheses about the generating model for the data. These models are 

then assessed relative to each other using data. The main tool to assess the 

models is the Akaike Information Criterion (AIC) and its variants. Inference is 

then made based on the relative weight of evidence for each of the models 

in the model set, taking into account the uncertainty associated with model 

selection. The method is inherently validatory by nature, because it relies on 

a set of models carefully specified on biological grounds. Prediction requires 

extrapolation, making the assumption that the model that has been fitted to 
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past data will still be correct in different places and at different times. This 

is more likely to be true if the model makes biological sense. Specifying 

models a priori also reduces the chance of overfitting: this occurs when the 

observed dataset is large enough that parameters can be fitted even though 

their effect is too small to be likely to extrapolate into predictions.

In all analyses, the small-sample Akaike Information Criterion (AICc) was 

used (Burnham & Anderson 2002). AICc is a relative measure of Kullback-

Leibler Information—the information lost when a fitted model is used to 

approximate the true generating model for the data (Burnham & Anderson 

2002). Calculation of AICc involves penalising the fit of the model (as 

measured by its log-likelihood) by a function of the number of parameters 

estimated for the model. Models with a smaller AICc give a more parsimonious 

fit to the data. For a given set of models, the relative support for a particular 

model is given by its Akaike weight (wi). Akaike weights assess the likelihood 

of model i given the data, relative to the sum of these likelihoods for all 

the models in the model set. wi is interpreted as the weight of evidence in 

favour of model i being the Kullback-Leibler best model, given that one of 

the models in the set is this model (Burnham & Anderson 2002).

  A priori model specification

The model fitting was constrained to series that were at least 10 years in 

length and to sites for which data were based on at least six independent 

seed trays. These restrictions were imposed to reduce variability due to 

small sample size and low sampling effort. A small subset of the data (two 

series for Nothofagus, both N. solandri, and three series for Chionochloa, all 

C. pallens) was used to fit preliminary mixed-effects models, which influenced 

the specification of the model set. For Nothofagus, the two series used to 

fit preliminary models were reused in the main analysis to maximise the 

precision of the parameter estimates because of the shortage of long data 

series for Nothofagus seedfall. The same analysis was run with these series 

omitted; this gave similar results and is not presented here. In Chionochloa, 

a small quantity of the data (three data series) was held out for validating the 

models; the remaining data were used to fit the a priori specified models.

The a priori models of Nothofagus seedfall were initially fitted using linear 

mixed-effects models with a random intercept term for each site (Pinheiro & 

Bates 2000). These models also allow autocorrelated residuals to be modelled, 

if necessary. Autocorrelation arises in time series data if the value of an 

observation is dependent on previous observations. This method proved 

unsuitable for modelling the Chionochloa data because of the extremely 

pulsed nature of the time series: Chionochloa often produced no, or very 

few, inflorescences within a population, but would occasionally produce 

large numbers of inflorescences during a high seedfall year. The Chionochloa 

data lent themselves to be transformed into a binary variable, with high 

seedfall years characterised as ‘successes’ and low seedfall years as ‘failures’. 

The threshold for a high seedfall year was set at the 70th percentile for 

that species, assessed from all available data (Table 1). Selection of the 

70th percentile was somewhat arbitrary, but conservatively approximated the 

point at which the plot of quantile score against quantile began to increase 

rapidly (Fig. 1). For Chionochloa, there was large interspecific variation in the 
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SPECIES 70th PERCENTILE

 (seeds/m2)

Nothofagus

N. fusca 255.0 (20)

N. menziesii 475.0 (65)

N. solandri 1293.0 (146)

N. truncata 149.9 (33) 

TABLE 1.    TOTAL SEEDFALL/FLOWERING INTENSITIES CORRESPONDING TO THE 

70th PERCENTILE FOR EACH Nothofagus  AND Chionochloa  SPECIES ANALYSED IN 

THIS STUDY. 

These seedfall values were used as the threshold values for determining the binary high/low 

seedfall threshold variable used as the response in the logistic regression analyses. The number of 

observations that the calculation is based on is given in brackets.

SPECIES 70th PERCENTILE

 (infl/t)

Chionochloa 

C. conspicua 11.04 (17)

C. crassiuscula 0.21 (46)

C. flavescens 0.60 (20)

C. macra 5.55 (9)

C. oreophila 0.92 (17)

C. pallens 3.25 (76)

C. rigida 2.29 (38)

C. rubra 2.78 (46)

C. spiralis 1.17 (9)

C. teretifolia 1.54 (29)
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Figure 1.   Quantiles of Nothofagus (A) and Chionochloa (B) seedfall. The arrow indicates the 70th percentile. 

magnitude of seedfall events. Therefore, the seedfall values for each species 

were first standardised by their mean and then a weighted mean of quantiles 

across species was calculated. The 70th percentile across all species was 

then backtransformed to get the value for each individual species. The use 

of a threshold to represent a continuous response will always be somewhat 

arbitrary. However, given the precision of the predictions of the continuous 

models, and the intuitive requirements by managers to categorise years 

as either ‘mast’ or ‘non-mast’, this seems a reasonable approach. Logistic 

regressions are also very intuitive because the predictions are presented as 

the probability of a ‘success’ (i.e. a high seedfall year).
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The logic of using a percentile threshold rather than an absolute threshold 

reflects the assumption that within each genus there are differences in the 

absolute magnitude of seeding between species, but that the standardised 

distribution of seeding events is the same between species. This assumption 

is supported by the high synchrony in the timing of high seedfall years both 

within species and between species of the same genus (Kelly et al. 2000; 

Schauber et al. 2002). Absolute threshold values probably depend on site 

fertility, plant size (Chionochloa particularly), and the differences between 

species in the mass of individual seeds (especially within Nothofagus).

Attempts to model these data using logistic mixed models failed because the 

software did not deliver credible results from the analysis. An alternative 

hierarchical method, in which each series was analysed independently and 

model averaging was then used to obtain the final model, was also not 

viable, because the data were too sparse: in some cases there was only 

one or two high seedfall years within a data series. Therefore, the data 

from each series were pooled and modelled using logistic regression, with 

the acknowledgement that there may be some small bias in the parameter 

estimates.

The logistic regression approach was also applied to the Nothofagus data 

as a second analysis, using the same model set as for the linear mixed-

effects model approach. Again, the 70th percentile was used as the threshold 

seedfall value (Table 1). 

All model parameters presented within this document follow the form of 

linear models:

  (1)

where θ0 is the intercept, θj are the parameter values, and xij are the observed 

predictors for predictor j and observation i. Yi is the observation (0 or 1 for 

logistic models). The transformation g varies according to the model.

An adequate fit of the global model (the model containing all the predictors 

found in the other models in the model set) is important for making valid 

inference from the analysis. A number of methods were used to assess 

goodness of fit. For the linear mixed-effects models, goodness of fit was 

assessed graphically (Pinheiro & Bates 2000). For the logistic regressions, the 

Hosmer-Lemeshow χ2 statistic (Dobson 2002) was used to assess goodness 

of fit, with five groups and three degrees of freedom. This test determines 

whether the frequencies of ‘successes’ and ‘failures’ within each group in 

the fitted model are significantly different from the frequencies observed in 

the data.

  Model averaging

Model averaging calculates a weighted average of the parameter values from 

the models in the model set to produce an averaged model. This technique 

takes into account model selection uncertainty in determining both the 

values of and the confidence limits on the parameters (Burnham & Anderson 

2002).

p

j
ijji xYg

1
0
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The AIC weights (wi) were used to calculate weighted averages of the 

parameters θ– 
^

 according to:

  (2)

where θ̂i is the estimated value of parameter θ in model i, wi is the AIC 

weight for model i, and R is the total number of models in the model set 

(Burnham & Anderson 2002). θ̂i was assumed to be zero for models in which 

a particular parameter was not included. The 95% confidence intervals were 

calculated according to:

  (3)

where 

  (4)

with var(θ̂i│gi ) equal to the variance of the parameter estimate given the 

model (Burnham & Anderson 2002).

 2.3.2 Rimu

The rimu analysis was based on only one dataset (Wanganui State Forest, 

n = 33; Norton & Kelly 1988) because the remaining datasets were either 

short in duration or, in the case of the Ianthe series, had been used to 

estimate a missing data point in the Wanganui series (Norton & Kelly 1988). 

This dataset was also used for the only published analysis of the relationship 

between climate and seedfall in rimu; therefore, there are no independent 

sources of information to a priori specify models of seedfall for rimu. The 

Wanganui State Forest seedfall data were log transformed and analysed using 

generalised least squares models, which allow autocorrelation within the 

residuals to be modelled (Pinheiro & Bates 2000). 

 2.3.3 Model validation

The purpose of model validation is to try to determine how well the 

model will predict new observations. The information theoretic approach 

is inherently validatory by nature, because the models are specified a priori 

and effectively tested on the data. However, two other techniques were 

also used to validate the model fits. The first is K-fold cross-validation, 

where the data used to fit the models are themselves used to validate the 

models. In this procedure, the data are divided randomly into K nearly equal 

groups. For each jth group, the model is fitted to all groups k ≠ j, and the 

parameter values are then used to predict the responses for the jth group 

(Davison & Hinkley 1997). The prediction error is then computed and 

averaged over all K parts. For Nothofagus and Chionochloa, K = 10 was used. 

For rimu, leave-one-out cross-validation was used. This is a special case of 

K-fold cross-validation, in which K equals the number of observations. Given 

the small sample size in the rimu analysis, it was felt that removing only one 

observation at a time would perturb the data sufficiently to cross-validate the 

model, while still allowing reasonable precision in each model fit.

Small amounts of additional data that were not used during the fitting process 

were also available to test the predictions of the models. One caveat about 

these data is that for Nothofagus in particular, they also included many 
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series that were excluded from the main analysis because of concerns over 

the small sampling effort. Therefore, we might expect a priori that these 

data would be more variable than the data used to fit the models. The rimu 

models were tested specifically on the seedfall data from Codfish Island 

(Whenuahou), where rimu seedfall is monitored for kakapo management.

 2 . 4  P H E N O L O G Y ,  S E L E C T I O N  O F  E N V I R O N M E N T A L 
P R E D I C T O R S  A N D  A  P R I O R I  M O D E L 
S P E C I F I C A T I O N

The selection of the initial set of predictors is an important part of the 

modelling process. The approach in this study has been to identify key 

developmental processes from the initiation of reproduction through to 

seedfall, and then to examine the climatic variables likely to influence each 

developmental process. Existing literature was used to guide the selection 

of potential predictors. Variable selection was constrained by the type of 

climate data collected at the stations used for the analysis. Monthly rainfall 

and daily temperature were the only data available at all of the sites.

The set of potential predictors was further constrained to exclude any 

predictors that would need to be measured during the season of seedfall. 

Climatic data are usually not available until at least 2–3 months after they 

are recorded; this prevents the inclusion of predictors that affect pollination 

or fruit maturation, because the predictions from such models would not 

be timely enough. This may be costly in terms of the model fit and our 

ability to interpret the relative importance of the predictors in an ecological 

context. However, alternative analyses that included these variables suggested 

that this cost is likely to be small (unpubl. data), except in the case of the 

rimu analysis (see section 3.3).

For Nothofagus and Chionochloa, analysis of a small subset of the data using 

mixed-effects models (following the procedure of Verbeke & Molenberghs 

2000) allowed further refinement of the set of predictors. This, along with 

results from existing literature, led to the formation of a set of a priori 

models for the analysis of these datasets.

 2.4.1 Nothofagus

Floral initials begin to form during the summer/autumn in the year prior 

to the seedfall event (Wardle 1984; Poole 1987). Flowering and fertilisation 

generally take place from late September through to early January 

(Wardle 1984). Nothofagus is wind pollinated. Ripe nuts fall from late January 

to early spring, although peak seedfall usually occurs from March to May 

(Wardle 1984; Alley et al. 1998).

The climate variables initially considered as predictors in the Nothofagus 

models and the timing of the developmental phases are shown in Fig. 2. 

A number of early writers observed that high seedfall years were preceded 

by years with dry warm summers (e.g. Poole 1955; Franklin 1977; Wardle 

1984). The importance of temperature during the preceding summer is 

supported by analyses of the Nothofagus solandri series from Craigieburn and 
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Mt Thomas in Canterbury (Allen & Platt 1990; Richardson et al. 2005); note 

that this period coincides with the development of the flower primordia. 

These analyses also suggest a limiting influence of high seedfall during 

previous years, perhaps as a consequence of resource depletion. Degree-days 

from November to April in the previous growing season were included as 

an overall measure of growing conditions during the season of primordial 

development. Maximum mean monthly summer temperature from 2 years 

preceding the seed year was also included because it is a substantial climatic 

correlate of lag1 seedfall, and may have either served as a climatic surrogate 

for previous seedfall and/or provided additional information in its own right 

(Richardson et al. 2005). Rainfall was excluded on the basis that the analysis 

of two of the data series showed that at best rainfall only played a very minor 

role in predicting seedfall. These preliminary analyses also indicated that 

the previous seedfall and summer temperature lag2 probably had non-linear 

effects that could be adequately modelled using degree 2 polynomials. 

The model set was formulated with three broad hypotheses in mind. These 

were:

Seedfall in 1. Nothofagus is synchronised between individuals by warm 

temperatures in the summer prior to seedfall.

Seedfall intensity is positively related to warm growing conditions in the 2. 

growing season prior to the season of seedfall.

Seedfall in the current year is negatively related to seedfall in the previous 3. 

year.

The models represent combinations of these hypotheses. All candidate models 

in the initial model set contained an intercept term; for the mixed-effects 

models, the intercept was modelled as a random effect nested within sites. 

Warm temperatures in the summer prior to seedfall were represented as 

January mean daily temperature (‘Jan.dmean’) or the maximum mean daily 

temperature recorded during the January–March period (‘Jan.Mar.dmax’). 

The effects of previous years included log-transformed seedfall lag1 (‘log.

Seedfall.lag1’) and the maximum mean daily temperature lag2 recorded 

between January and March, both modelled as polynomial terms. Growing 

conditions during the previous growing season were modelled using degree-

days calculated from November through to April (‘Nov.Apr.degreedays’). The 

predictors included in each model are shown in Table 2. 

 Time 

Phenological 
stage 

 
        

Temperature          

Rainfall          

Degree days          

Seedfall          

 Jan 
lag 2 

Apr July Oct Jan 
lag 1 

Apr July Oct Jan 
lag 0 

Apr

Primordia Flowering Seed

Figure 2.   Nothofagus 
reproductive phenology 

in relation to growing 
season, lag with respect 

to the year of seedfall, and 
the environmental factors 

likely to influence each 
phenological stage.
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 2.4.2 Chionochloa

The genus Chionochloa includes 24 species, 22 of which are endemic to 

New Zealand (Edgar & Connor 2000). The long-lived vegetative tillers of 

Chionochloa optionally produce a single inflorescence from late November 

through to early February (Rees et al. 2002). Flowering intensity the following 

year is correlated with warm summer temperatures during floral initiation 

(Mark 1968; McKone et al. 1998; Kelly et al. 2000; Rees et al. 2002). Seeds 

are dispersed during late summer–early autumn.

The initial set of predictors and their relationship with the timing of 

the phases of reproductive development was almost identical to that for 

Nothofagus (Fig. 3). The timing of initiation, flowering and seedfall are 

similar, and both genera are wind pollinated. Hence, the critical periods in 

which climate might affect reproductive output are also very similar. These 

predictors were refined through an analysis of three C. pallens datasets and 

previous analyses in the literature that detailed the primary climatic drivers 

of flowering in Chionochloa. The hypotheses directing the formulation of 

the models were identical to those for Nothofagus with the addition of:

4. Summer rainfall in the preceding year is positively associated with 

seedfall.

Summer temperatures were represented as the mean daily temperature 

during January and February (‘Jan.Feb.dmean’) and were modelled as 

degree 2 polynomials, as was lag1 November to April degree-days (‘Nov.

Apr.degreedays’). Summer rainfall was the total rainfall during January and 

February (‘Jan.Feb.rain’). Previous seedfall was included as a binary variable 

(‘High.seed’): 1 when seedfall exceeded the 70th quantile for a species, and 

zero otherwise. The a priori models are given in Table 3.

MODEL Jan.Mar. Jan.dmean. Poly(Jan.Mar. Poly(Seedfall. Nov.Apr.

  dmax.lag1 lag1 dmax.lag2, 2) lag1, 2) degreedays.lag1

 1 – ● – – –

 2 ●  – – – –

 3 – ●  ●  – –

 4 ●  – ●  – –

 5 – ●  – ●  –

 6 ●  – – ●  –

 7 – ●  ●  ●  –

 8 ●  – ●  ●  –

 9 – ●  – – ● 
 10 ●  – – – ● 
 11 – ●  ●  – ● 
 12 ●  – ●  – ● 
 13 – ●  – ●  ● 
 14 ●  – – ●  ● 
 15 – ●  ●  ●  ● 
 16 ●  – ●  ●  ● 
 17 ●  ●  ●  ●  ● 

TABLE 2.    PREDICTORS INCLUDED IN EACH OF THE MODELS OF SEEDFALL FOR 

Nothofagus .  ALL MODELS CONTAIN AN INTERCEPT TERM. ●  INDICATES INCLUSION 

OF THE PREDICTOR IN THE MODEL.
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 2.4.3 Rimu

The phenology of fruit production in rimu is outlined in Norton & Kelly 

(1988) and Norton et al. (1988) (see Fig. 4). The production of seed from 

initiation to seedfall occurs over three growing seasons. It is thought that 

ovule and cone initiation occurs some time during the summer or autumn of 

growing season 1. Pollination follows in (November) December and January 

of growing season 2. Although uncertain, fertilisation of the ovules may 

occur 12 months later, during growing season 3. Ripe seed falls a short 

time later in the autumn.

 Time 

Phenological 
stage 

 
        

Temperature          

Rainfall          

Degree days          

Seedfall          

 Jan 
lag 2 

Apr July Oct Jan 
lag 1 

Apr July Oct Jan 
lag 0 

Apr

FloweringPrimordia Seed

Figure 3.   Chionochloa 
reproductive phenology 

in relation to growing 
season, lag with respect 

to the year of seedfall, and 
the environmental factors 

likely to influence each 
phenological stage.

MODEL Poly(Jan.Feb. Poly(Nov.Apr. Jan.Feb.rain. Poly(Jan.Feb. High.seed.

 dmean. degreedays. lag1 dmean. lag1

 lag1, 2) lag1, 2)  lag2, 2)

 1 ● – – – –

 2 – ●  – – –

 3 ●  – ●  – –

 4 – ●  ●  – –

 5 ●  – – ●  –

 6 – ●  – ●  –

 7 ●  – ●  ●  –

 8 – ●  ●  ●  –

 9 ●  – – – ● 
 10 – ●  – – ● 
 11 ●  – ●  – ● 
 12 – ●  ●  – ● 
 13 ●  – – ●  ● 
 14 – ●  – ●  ● 
 15 ●  – ●  ●  ● 
 16 – ●  ●  ●  ● 
 17 ●  ●  ●  ●  ● 

TABLE 3.    PREDICTORS INCLUDED IN EACH OF THE MODELS OF SEEDFALL 

FOR Chionochloa .  ALL MODELS INCLUDED AN INTERCEPT TERM. ●  INDICATES 

INCLUSION OF THE PREDICTOR IN THE MODEL.
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Temperature accompanied by long day length is the most common factor 

initiating flowering in mast species around the world (Kelly & Sork 2002). 

In addition, initiation of cone production in conifers can be increased by 

drought, because dry years result in elevated levels of gibberellins, the 

hormones responsible for cone initiation (Pharis & King 1985). Mean daily 

temperature and total rainfall from December to February during the period 

of initiation were included in the variable set. There is evidence from a 

number of studies that high seed production during the year of initiation 

can also limit the reproductive output (reviewed by Kelly & Sork 2002). 

Consequently, lag2 seedfall was also included in the variable set.

Pollination failure in rimu is probably caused by wet weather (McEwen 1983, 

cited in Norton et al. 1988). The total number of days on which it rains 

during the pollination period (December lag2–January lag1) is likely to be 

more important than the absolute amount of rain that has fallen. The number 

of wet days was used for December, but unfortunately the record for wet 

days (rain > 1 mm) was not complete for January, so total rainfall was used 

instead.

To complete the set of possible predictors, monthly mean temperature and 

monthly total rainfall during the summer of fertilisation/fruit maturation were 

also included. This gave 15 possible predictors in the initial set: seedfall.lag2, 

monthly mean temperature and total rainfall for Dec.lag3 to Feb.lag2 and 

Dec.lag1 to Feb.lag0, number of wet days for Dec.lag3, and total rainfall for 

Jan.lag1. As mentioned previously, it was not appropriate to propose a priori 

models for the analysis of rimu seedfall, because all previous information 

on the relationship between climate and rimu seedfall was derived from 

an analysis of the Wanganui State Forest dataset by Norton & Kelly (1988). 

Therefore, the final models were obtained by post-hoc stepwise model fitting 

procedures.

 Time 

Phenological 
Stage 

  
 

                   Initiation Fertilisation SeedfallPollination

Temperature                       

Rainfall                       

Seedfall                       

 

 

Oct 
lag3 

Jan 
lag2 

Apr July Oct Jan 
lag1 

Apr July Oct Jan 
lag0 

Apr 

Figure 4.   Rimu (Dacrydium cupressinum) reproductive phenology in relation to growing season, lag with respect to the year of 
seedfall, and the environmental factors likely to influence each phenological stage.
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 3. Results

 3 . 1  N o t h o f a g u s

The global mixed-effects model gave an adequate fit to the data, with a 

coefficient of determination of 0.64 estimated at the site level. There was 

also no significant residual autocorrelation, indicating that the model terms 

were sufficient to account for this structure in the data. The global model 

was a priori rejected from the model set because there was some parameter 

redundancy: Jan.Mar.dmax.lag1 and Jan.dmean.lag1 were highly correlated, 

because the maximum temperature often occurred in January. 

Models 8 and 16 were clearly superior to all others (high wi), although neither 

received unilateral support (Table 4). The fit of Model 16 as estimated by 

the log-likelihood was similar to Model 8. Since Models 16 and 8 differ by 

only one parameter, this suggests that the shared parameters are important 

but the additional parameter in Model 16 is not. Consequently, Model 16 

can be discarded as a serious contender for the Kullback-Leibler best model. 

The cross-validated coefficient of determination for Model 8 was 61.5%; this 

dropped to only 42.5% when predictions were based on fixed effects only 

(i.e. at the population level, excluding the random effects of site). Model 8 

contained all the predictors in the model set except for the lagged degree-day 

term. It is interesting to note that models without the lagged seedfall terms 

generally performed poorly, with six of the eight bottom-ranked models not 

containing these terms. 

Model 8 was biased towards classifying seedfall events as less than the 70th 

percentile for each species, i.e. there was a tendency to under-predict high 

MODEL df LOG-LIKELIHOOD AICc ΔAICc wi 

 8 8 –540.1 1096.7 0.00 6.39 × 10–1

 16 9 –539.6 1097.8 1.14 3.61 × 10–1

 4 6 –553.3 1118.9 22.22 9.55 × 10–6

 12 7 –553.1 1120.6 23.96 4.02 × 10–6

 6 6 –554.5 1121.4 24.72 2.74 × 10–6

 14 7 –554.5 1123.4 26.73 1.00 × 10–6

 15 9 –553.7 1126.1 29.43 2.59 × 10–7

 7 8 –558.4 1133.4 36.72 6.78 × 10–9

 11 7 –564.3 1142.9 46.27 5.73 × 10–11

 3 6 –567.3 1147.0 50.29 7.68 × 10–12

 13 7 –571.7 1157.9 61.18 3.31 × 10–14

 5 6 –574.9 1162.1 65.45 3.92 × 10–15

 2 4 –583.3 1174.8 78.13 6.92 × 10–18

 10 5 –583.3 1176.8 80.11 2.57 × 10–18

 9 5 –595.5 1201.2 104.52 1.28 × 10–23

 1 4 –596.7 1201.6 104.95 1.04 × 10–23

TABLE 4.    SUPPORT FOR THE A PRIORI SET OF LINEAR DIFFERENCE MODELS FOR 

Nothofagus .  MODEL NUMBER REFERS TO THE MODELS OUTLINED IN TABLE 2.
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seedfall events relative to low seedfall events (cross-validated percentage 

of correct classifications: low = 90.2%, n = 170; high = 45.0%, n = 94; total 

correct = 76.5%, n = 264). These predictions were, nonetheless, significantly 

better than the random expectation of correct prediction (low = 70%, 

high = 30%, total correct = 58%; χ2 = 44.3, df = 3, P < 0.001).

Model averaging was applied to the model set in an attempt to find a model 

that gave more robust predictions of seedfall. The cross-validated coefficient 

of determination for the averaged model was 42.2%. The average model was 

marginally more successful than Model 8 at correctly classifying seedfall events 

as larger or smaller than the 70th percentile (cross-validated percentage of 

correct classifications: low = 86.4%, n = 184; high = 56.4%, n = 80; total correct 

predictions = 77.3%, n = 264). However, there was still a bias towards under-

classifying high seedfall years.

The ability of the averaged model to correctly classify low and high seedfall 

events appears to be very sensitive to the value selected as the threshold for 

defining a high seedfall year (Fig. 5). This bias probably reflects a combination 

of two things. First, the distribution of seedfall is leptokurtic: there are many 

low observations and then a long tail containing the few high observations. 

Since the threshold is defined to lie within the long tail, variability in the 

predictions of the bulk of the low observations has no effect on whether 

the prediction is classified as a high or low year. However, this is not the 

case for the high seedfall years. Consequently, the model is inevitably biased 

toward correctly classifying low seedfall events and being sensitive to error 

in the predictions of high seedfall events. This can be seen in Fig. 5, where 

correct classification of events above the threshold becomes comparable with 

those below as the threshold approaches the median (74 seeds/m2). Second, 

high seedfall events are more often associated as positive residuals than 

low seedfall events; consequently, the model tends to under-predict high 

seedfall events and over-predict low seedfall events. It should be emphasised 

Figure 5.   Sensitivity of the 
average Nothofagus linear 
mixed-effects model to the 

choice of threshold value 
in terms of its ability to 

correctly classify seedfall 
events as above or below 
the threshold. Points for 

each threshold are based on 
500 bootstrapped samples 

from a dataset of 240 
observations. 

Threshold (seeds/m2)

P
ro

po
rt

io
n 

of
 c

or
re

ct
 c

la
ss

ifi
ca

tio
ns

0 500 1000 1500 2000 2500 3000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

< Threshold
> Threshold
Total correct

Threshold (seeds/m2)



20 Monks—Climatic seedfall prediction

that there is currently no clear understanding of what constitutes a useful 

seed intensity threshold in Nothofagus at which action to manage pests is 

required. However, we should be mindful of the fact that although lower 

thresholds result in more reliable predictions, they are also less biologically 

meaningful and hence less useful as a decision point for management, because 

low seedfall years add few additional nutrients into the system.

In the averaged model, the large coefficient for maximum mean 

monthly temperature from January to March in the year prior to seedfall 

(Jan.Mar.dmax.lag1) suggests that seedfall is very sensitive to changes in this 

predictor (Table 5). This supports the expectation that summer temperature 

during primordial initiation is a key determinant of future seedfall. Seedfall in 

the year prior to the seedfall event has a large negative non-linear effect on 

seedfall. The rate at which previous seedfall inhibits seedfall accelerates as 

the amount of seedfall increases (Fig. 6). The opposite pattern is observed for 

the maximum mean daily temperature from January to March 2 years prior 

to the seedfall event (Jan.Mar.dmax.lag2): the rate of change in seedfall with 

respect to Jan.Mar.dmax.lag2 is highest when Jan.Mar.dmax.lag2 increases 

from low levels (Fig. 6). The pathway by which Jan.Mar.dmax.lag2 inhibits 

seedfall is not clear, but the fact that it is negatively related to lag1 seedfall 

may mean that it is confounded with the resource dynamics surrounding 

previous seedfall rather than having a direct effect on seedfall itself. However, 

Piovesan & Adams (2001) argue that Fagus trees are primed for floral 

induction by cool moist summers 2 years prior to seedfall because of an 

increased build-up of carbohydrates under these conditions. The contribution 

to the model of November to April degree-days and January daily mean 

temperature, both at lag1, was small, with both confidence intervals including 

zero.

PREDICTOR MEAN LOWER 95%CI UPPER 95%CI

K-L best model (Model 8)

(Intercept) 4.434 3.360 5.508

Jan.Mar.dmax.lag1 1.484 1.282 1.686

Jan.Mar.dmax.lag2 –0.677 –0.924 –0.431

Jan.Mar.dmax.lag22 0.160 0.029 0.292

log.Seedfall.lag1 0.445 0.164 0.725

log.Seedfall.lag12 –0.067 –0.096 –0.037

Average model   

Intercept 4.422 3.340 5.505

Jan.dmean.lag1 0.848 –0.814 2.510

Jan.Mar.dmax.lag1 1.442 1.180 1.705

Nov.Apr.degreedays.lag1 0.001 –0.001 0.004

Jan.Mar.dmax.lag2 –0.681 –0.930 –0.433

Jan.Mar.dmax.lag22 0.164 0.155 0.173

Log(Seedfall.lag1+1) 0.449 0.166 0.732

Log(Seedfall.lag1+1)2 –0.067 –0.068 –0.066

TABLE 5.    COEFFICIENTS AND 95% CONFIDENCE INTERVALS FOR THE PARAMETERS 

INCLUDED IN THE K-L  BEST MODEL AND FOLLOWING MODEL AVERAGING FOR THE 

LINEAR MIXED MODELS APPLIED TO Nothofagus  SEEDFALL.
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  Logistic model

To address the poor ability of the linear mixed-effects models to correctly 

classify seedfall events as being high or low, a series of logistic regression 

models were fitted using the same predictors and model set but with the 

response transformed into a binary variable according to whether seedfall 

exceeded the 70th percentile on a species-specific basis. Logistic models 

have the advantage that the predicted response variable is a probability of a 

‘success’: in this case defined as a seedfall event greater than the threshold. 

To convert predictions from the logit scale to probabilities of success (p): 

p = 1/(1 + exp(−Prediction)).

The global model (Model 17) fitted the data well (χ2 = 0.90, df = 3, P > 0.1) 

but, as with the previous analysis, this model was excluded from the final 

model set due to redundancy in the parameters.

Model 15 had very strong support, followed by Model 16 (Table 6). These 

two models differed in the summer initiating variable (Jan.dmean.lag1 and 

Jan.Mar.dmax.lag1 respectively). Models were said to predict a high seedfall 

year if the probability of ‘success’ was greater than 0.5. Model 15 gave 

good predictions of the probability of a high seedfall year (cross-validated 

percentage of correct classification: high = 73.8%; low = 84.8%; total = 81.4%; 

cf. random, χ2 = 92.7, df = 3, P < 0.001), although there was a slight bias 

toward classifying events as low seedfall years.

Applying model averaging, the average model performed well, with the 

cross-validated fits correctly classifying seedfall events 79.1% of the time. 

Prediction error was more balanced between high and low seedfall years 

(high = 80.0%, n = 80; low = 78.8%, n = 184; cf. random, χ2 = 103.0, df = 3, 

P < 0.001) than with Model 15. Parameter values for Model 15 and the average 

model are given in Table 7. While the average model had a slightly, but 

non-significantly, higher total error rate (χ2 = 0.90, df = 1, P > 0.1), the errors 

were more balanced between high and low seedfall years; for this reason it 

should be the preferred model.

Standardised parameter space
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Figure 6.  The functional 
form of the fitted 

relationship between 
Nothofagus seedfall and 
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MODEL df DEVIANCE AICc ΔAICc wi

 15 7 193.9 208.3 0.00 8.47 × 10–1

 16 7 197.4 211.9 3.54 1.44 × 10–1

 8 6 206.3 218.7 10.35 4.78 × 10–3

 7 6 207.6 220.0 11.64 2.51 × 10–3

 11 5 212.0 222.3 13.96 7.89 × 10–4

 12 5 212.7 222.9 14.58 5.79 × 10–4

 4 4 219.1 227.3 18.98 6.41 × 10–5

 3 4 222.5 230.7 22.38 1.17 × 10–5

 14 5 242.0 252.2 43.87 2.53 × 10–10

 6 4 244.6 252.8 44.43 1.90 × 10–10

 13 5 246.8 257.0 48.73 2.22 × 10–11

 5 4 253.3 261.5 53.18 2.40 × 10–12

 2 2 271.0 275.0 66.72 2.75 × 10–15

 10 3 269.4 275.5 67.14 2.23 × 10–15

 9 3 272.6 278.7 70.40 4.37 × 10–16

 1 2 276.5 280.6 72.23 1.75 × 10–16

TABLE 6.    SUPPORT FOR THE A PRIORI SET OF LOGISTIC REGRESSION MODELS FOR 

Nothofagus .  MODEL NUMBER REFERS TO THE MODELS OUTLINED IN TABLE 2.

PREDICTOR PARAMETER ESTIMATE LOWER 95% CI UPPER 95% CI

K-L best model (Model 15)   

(Intercept) –2.263 –3.282 –1.244

Jan.Mar.dmax.lag1 1.286 0.902 1.670

Jan.Mar.dmax.lag2 –1.039 –1.432 –0.647

Jan.Mar.dmax.lag22 0.297 0.097 0.498

log.Seedfall.lag1 0.772 0.350 1.193

log.Seedfall.lag12 –0.086 –0.131 –0.041

Average model   

(Intercept) –3.181 –4.382 –1.981

Jan.dmean.lag1 0.796 0.213 1.379

Jan.Mar.dmax.lag1 0.951 –0.719 2.621

Nov.Apr.degreedays.lag1 0.008 0.003 0.013

Jan.Mar.dmax.lag2 –1.295 –1.747 –0.843

Jan.Mar.dmax.lag22 0.394 0.379 0.409

Log.Seedfall.lag1 0.934 0.447 1.421

Log.Seedfall.lag12 –0.103 –0.108 –0.098

TABLE 7.    COEFFICIENTS AND 95% CONFIDENCE INTERVALS FOR THE PARAMETERS 

INCLUDED IN THE K-L  BEST MODEL AND FOLLOWING MODEL AVERAGING 

FOR LOGISTIC REGRESSION MODELS APPLIED TO THE Nothofagus  DATA.  THE 

PARAMETERS RELATE TO THE RESPONSE ON THE LOGIT SCALE.
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 3 . 2  C h i o n o c h l o a

Attempts to model Chionochloa flowering intensity directly resulted in 

poorly fitting models. The variability of Chionochloa flowering is much 

more extreme than flowering of either Nothofagus or rimu. Chionochloa 

species fill three of the top five places in a list of the most extreme 

(i.e. variable) mast seeders in the world (based on coefficients of variation; 

Kelly et al. 2000), having many low seedfall years punctuated by occasional 

extreme seedfall years. Consequently, it was decided that the only reasonable 

approach to modelling seedfall in Chionochloa that would generalise across 

sites and species was to convert the seedfall data to a binary variable, with 

species-specific thresholds set at the 70th percentile level using the values 

outlined in Table 1.

The global model gave an adequate fit to the data (χ2 = 5.53, df = 3, P > 0.1). 

There was little to discriminate between the top two models in terms of 

their fit to the data (Table 8). These two models differed by one parameter, 

Jan.Feb.rain.lag1, which gave only a modest decrease in deviance in Model 15 

at the cost of one extra parameter. Model 13 (the K-L best model) accounted 

for only 36.2% of the variation in the data. This model correctly classified 

high and low seedfall years 72.6% of the time (n = 307; cf. random χ2 = 32.3, 

df = 3, P < 0.001). While prediction of low seedfall years was very good 

(86.0% correct, n = 214), classification of high seedfall years was relatively 

poor (41.9% correct, n = 93).

The average model also performed well, correctly classifying high and low 

seed years 76.2% of the time (n = 307; cf. random χ2 = 79.3, df = 3, P < 0.001). 

The model predictions were more balanced than with Model 13, predicting 

low seedfall years (79.0%, n = 214) only slightly more than high seedfall years 

MODEL df DEVIANCE AICc ΔAICc wi

 13 6 240.3 252.6 0.00 0.47

 15 7 238.4 252.8 0.15 0.43

 17 9 237.1 255.7 3.07 0.10

 11 5 254.2 264.4 11.82 1.01 × 10–1

 9 4 257.7 265.9 13.25 6.20 × 10–4

 5 5 256.9 267.1 14.50 3.31 × 10–4

 7 6 255.9 268.1 15.52 1.99 × 10–4

 14 6 273.5 285.8 33.20 2.88 × 10–8

 16 7 272.9 287.2 34.61 1.42 × 10–8

 6 5 288.8 299.0 46.36 3.99 × 10–11

 10 4 292.2 300.3 47.67 2.07 × 10–11

 12 5 290.4 300.6 48.01 1.75 × 10–11

 8 6 288.7 300.9 48.32 1.50 × 10–11

 3 4 298.4 306.6 53.95 9.00 × 10–13

 1 3 300.9 306.9 54.32 7.45 × 10–13

 2 3 330.8 336.9 84.29 2.31 × 10–19

 4 4 329.9 338.0 85.43 1.31 × 10–19

TABLE 8.    SUPPORT FOR THE A PRIORI SET OF LOGISTIC REGRESSION DIFFERENCE 

MODELS FOR Chionochloa .  MODEL NUMBER REFERS TO THE MODELS OUTLINED IN 

TABLE 3.
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(70.0%, n = 93). When applied to a small novel dataset, this position was 

reversed (high = 85%, n = 20; low = 70.2%, n = 47), but the average correct 

classification was similar (74.6%).

Details of the parameters for the averaged model are given in Table 9. High 

seedfall during the previous year is strongly negatively associated with the 

probability of high seedfall in the following year. This pattern is consistent 

with resource-based models of mast seeding for Chionochloa, in which 

flowering results in short-term depletion of the resource reserves within a 

plant (Rees et al. 2002). However, as with Nothofagus, there is little support 

for a large influence of growing degree-days in the year prior to seedfall 

on reproductive effort, even though leaf growth is known to increase with 

temperature in Chionochloa (Espie et al. 1992). There is, however, strong 

support for an effect of summer temperature lag1 and lag2, although the 

effect is slightly different between the two: summer temperature at lag1 is 

positively but non-linearly (Fig. 7) related to the probability of a high seedfall 

year, reaching a maximum at very high temperatures (> 1.5°C above the 

mean); in contrast, increasing summer temperature lag2 has an increasingly 

negative effect on reproductive effort (Fig. 7). As with Nothofagus, it is not 

absolutely clear whether this is a direct effect, or whether it is indirectly 

related due to the effect of summer temperature at lag1 on reproductive 

effort at lag1. Flowering in Chionochloa seems most likely to be driven by 

a synchronising agent, summer temperature in the year prior to flowering, 

mediated by a resource-linked constraint of the plant’s recent reproductive 

history.

PARAMETER PARAMETER ESTIMATE LOWER 95%CI UPPER 95%CI

K-L best model (Model 13)   

(Intercept) –0.726 –0.894 –0.557

Jan.Feb.dmean.lag1 1.993 1.765 2.221

Jan.Feb.dmean.lag12 –0.401 –0.507 –0.294

Jan.Feb.dmean.lag2 –0.913 –1.088 –0.737

Jan.Feb.dmean.lag22 –0.328 –0.448 –0.208

High.seed.lag1 –1.938 –2.297 –1.579

Average Model   

(Intercept) –0.890 –1.549 –0.231

Jan.Feb.dmean.lag1 2.043 1.330 2.756

Jan.Feb.dmean.lag12 –0.406 –0.444 –0.368

Nov.Apr.degreedays.lag1 –0.001 –0.003 0.001

Nov.Apr.degreedays.lag12 0.000 0.000 0.000

Jan.Feb.rain.lag1 0.001 –0.001 0.003

Jan.Feb.dmean.lag2 –0.908 –1.432 –0.384

Jan.Feb.dmean.lag22 –0.329 –0.343 –0.316

High.seed.lag1 –1.968 –3.026 –0.910

TABLE 9.    COEFFICIENTS AND 95% CONFIDENCE INTERVALS FOR THE PARAMETERS 

INCLUDED IN THE K-L  BEST MODEL AND FOLLOWING MODEL AVERAGING 

FOR LOGISTIC REGRESSION MODELS APPLIED TO THE Chionochloa  DATA.  THE 

PARAMETERS RELATE TO THE RESPONSE ON THE LOGIT SCALE.
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 3 . 3  R I M U

Constraining the predictor set to only include variables outside the year 

of seedfall gave a very poor model, with a cross-validated coefficient of 

determination of only 31.7% (Table 10, Model 1). The reason for this poor 

fit seems to be that a cold wet January in the year of seedfall was associated 

with lower seed yields. This is apparently the time at which fertilisation 

takes place (Norton et al. 1988). A model in which the predictor set was 

not constrained gave a much better fit to the data (cross-validated r2 = 0.62; 

Standardised parameter space
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Figure 7.   The functional 
form of the fitted 

relationship between 
Chionochloa seedfall and 

the mean daily temperature 
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and Jan.Feb.dmean.lag2 
respectively). Seedfall 

has been scaled to be a 
proportion of its maximum 
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PREDICTOR VALUE SE LOWER 95% CI UPPER 95% CI

Model 1    

(Intercept) 4.088 0.305 3.490 4.685

temp.Jan.lag2 –1.038 0.238 –1.505 –0.571

Dec.rain.lag3 –0.003 0.001 –0.006 0.000

Model 2    

(Intercept) 6.224 0.522 5.200 7.248

temp.Jan.lag0 0.817 0.173 0.479 1.155

log.Seedfall.lag2 –0.432 0.112 –0.651 –0.213

Dec.rain.lag3 –0.005 0.001 –0.008 –0.003

Jan.rain.lag2 0.002 0.001 0.000 0.004

Jan.rain.lag0 –0.003 0.001 –0.005 –0.001

Feb.rain.lag2 0.003 0.001 0.001 0.005

Dec.wetday.lag2 0.118 0.054 0.012 0.225

Jan.rain.lag1 –0.002 0.001 –0.004 0.000

TABLE 10.    COEFFICIENTS AND 95% CONFIDENCE LIMITS FOR THE PARAMETERS 

INCLUDED IN THE RIMU (Dacrydium cupress inum )  MODELS. 

Model 1 is the model constrained to exclude all predictors from the growing season in which seedfall 

occurs. Model 2 includes those predictors.
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Table 10, Model 2). However, including these variables severely limits the 

utility of the model, because by the time the information is available to 

calculate the predictions, the seeds will already be falling. There were too 

few data to make sensible statements about the model’s ability to predict 

high and low seedfall years.

The unconstrained model (Model 2, Table 10) predicts that high seedfall 

events will be associated with warm dry conditions during the fertilisation 

period and generally wetter conditions during the summer of initiation (lag2), 

and will be inhibited by high seedfall 2 years before the seedfall event of 

interest. Interestingly, Norton & Kelly (1988) noted that their correlation 

analysis showed that cold January temperatures during the year of initiation 

were associated with high seedfall in this dataset. This analysis is supported 

by Model 1, but not by Model 2. In Model 2, monthly mean daily temperature 

for January in the season of seedfall is a predictor of seedfall. Thus, January 

temperature and seedfall, both at lag2, are confounded as predictors: either 

or both variables could be important. Seedfall.lag2 seems more likely to be 

important, however, because of the more obvious inhibitory pathway via the 

plant’s internal resource dynamics. It is more difficult to explain why cold 

temperatures during cone initiation might lead to higher seedfall, although 

one possibility could be a greater net carbon balance during cool moist 

periods, as found for Nothofagus and Chionochloa.

Models 1 and 2 were used to generate predictions from climate data 

from Invercargill aerodrome to validate the models against data collected 

from Codfish Island (Whenuahou), off the northwestern coast of Stewart 

Island/Rakiura. Model 1 gave a fairly poor fit to the data (r2 = 0.32, n = 6; 

Fig. 8) and failed to predict the extreme seedfall year of 2002 (predicted 

seedfall = 175 seeds/m2, observed = 663 seeds/m2). In contrast, predictions 

from the unconstrained model (Model 2) were very good (r2 = 0.87, n = 5; 

Fig. 8), with the prediction for 2002 of 484 seeds/m2 approaching that of the 

true value (and very close on the log scale). More data would be needed to 

critically evaluate these models.
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 3 . 4  P R E D I C T I O N S  F O R  2 0 0 4 / 0 5

At the time of writing this report (June 2004), predictions of Nothofagus 

and Chionochloa seedfall for the Te Anau Basin in the 2004/05 year were 

made using the Takahe Valley climate data and seedfall/flowering records 

collected locally1.

 3.4.1 Nothofagus

The model predicted that there was a low to moderate probability that 

2004/05 would be a high seedfall year in the Te Anau Basin. The probabilities 

that the Princhester Creek site and the Eglinton would exceed the 70th 

percentile were 0.56 and 0.55 respectively. For Takahe Valley, the probability 

was only 0.27. The Takahe Valley site experienced a moderate seedfall year 

in 2003/04, which largely accounts for the low expectation of a high seedfall 

year in 2004/05 for this site compared with the others.

 3.4.2 Chionochloa

The model predicted that for the lower altitude sites in Takahe Valley 

(900–1000 m a.s.l) containing C. rubra and C. spiralis there was a high 

probability that 2004/05 would be a high seedfall year (0.89 and 0.73 

respectively). For the remainder of the species (C. pallens, C. crassiuscula, 

C. teretifolia and C. rigida, c. 1160–1190 m a.s.l), there was a low to moderate 

probability of a high seedfall year (range of predictions = 0.4–0.44).

 3.4.3 Rimu

The constrained model (Model 1) predicted that 2004/05 would be a 

low to moderate seedfall year for rimu on Codfish Island (Whenuahou) 

(67 seeds/m2; 95% confidence limits = 4–1509 seeds/m2). The early to mid-

summer of 2002/03 (during cone initiation) was only slightly colder than 

average, but had higher than average rainfall. This prediction should be 

treated with caution, however, given the caveats on the constrained model. 

It was not be possible to make predictions from the unconstrained model 

(Model 2) until the January 2005 climate data were available.

1 Subsequent observation showed that seedfall in the 2004/05 year was as follows: 

Nothofagus—Princhester Creek, Eglington and Takahe Valley all exceeded their 70th seedfall 

percentile (Glen Greaves, DOC, pers. comm.). 

Chionochloa—three of the six species monitored in Takahe Valley (C. rigida, C. rubra and 

C. pallens) exceeded their 70th percentile (Bill Lee, Landcare Research, pers. comm.).

Rimu—seedfall on Codfish Island (Whenuahou) was 1954 seeds/m2 (Daryl Eason, DOC, pers. 

comm.).
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 4. Discussion

 4 . 1  U N C E R T A I N T Y  I N  T H E  P R E D I C T I O N S

The quality of models and the predictions made are strongly influenced by 

the quality of the data used to generate them. One limitation of this study is 

that climate could only be modelled at a coarse scale. The network of New 

Zealand climate stations is sparse compared with the fine-scale topographical 

features that are likely to influence seedfall at a local level. The climate 

stations used in this study were up to 65 km from the site of seedfall 

collection. The effects of distance are probably most pronounced along the 

steep environmental gradients found in the Southern Alps, where many of 

the predictions are required. Although the climate data were expressed as 

deviations from the mean, which should ameliorate those absolute differences 

to some degree, we cannot expect to make especially fine-scale predictions. 

Two adjacent valleys or aspects of the same valley could, on rare occasions, 

behave differently, but the resolution of the climate data would not be 

sufficient to make predictions that would address this. Prediction could 

probably be enhanced by the presence of local weather stations.

To counter the problem of localised conditions, site-specific models appear 

quite attractive, as they can be tailored to the particular environmental 

peculiarities of a site and so avoid the generalisations necessary for fitting 

a site-independent model. However, many of the available data are inadequate 

to develop such models. High seedfall years are infrequent and therefore 

require a lot of data to successfully identify and parameterise models. 

Small datasets generally result in low precision of the parameter estimates, 

ultimately leading to low predictive power.

It may be possible to exploit the relatively high degree of reproductive 

synchrony between species and between sites by these masting species 

(Schauber et al. 2002) to give added certainty to the semi-quantitative 

predictions made by the models (i.e. is it going to be a high seedfall year 

or not?). Predictions can be made for and compared across a number 

of sites. If they all agree, or the large majority agree, we can be very 

confident of the results; if, on the other hand, there is considerable variation 

in the predictions, this should alert managers to the need to examine the 

predictions more carefully. If the predictions agree regionally, then it may be 

that the models are predicting local high seedfall events; however, if there 

is considerable variation at this level also, then managers should proceed 

cautiously, and perhaps directly monitor the situation in the field where 

appropriate.
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 4 . 2  S P E C I E S - S P E C I F I C  P R E D I C T I O N S  A N D  T H E  U S E 
O F  T H R E S H O L D S

The intensity of a seeding event is almost certainly species-specific. For 

Chionochloa, the different species vary greatly in tussock size and the 

fertility of the underlying substrate on which they grow. In Nothofagus, 

the size of seeds differs markedly between species (Ledgard & Cath 1983), 

which will, in turn, affect the nutrient input required to produce each seed. 

It would seem, therefore, that species is a notable omission from the a 

priori models specified in this study. However, this omission was deliberate. 

Given the available data, many of the species are confounded by site effects 

because there is only one dataset for that particular species. Thus, it could 

in fact be misleading to model this as a species effect. The linear mixed-

effects model for Nothofagus modelled the intercept term as a random effect 

grouped by series, which encapsulates variation in the mean seedfall per 

species. However, this approach is not useful for making predictions about 

new data series not used when fitting the model, because ‘species’ is not 

specifically modelled. The logistic models dealt with the species issue by 

using species-specific thresholds. At first glance, it could be argued that using 

a threshold derived from unreplicated species data is as equally site- rather 

than species-dependent as including a species parameter in the model. It is 

different, however, because it does not depend on the absolute value of the 

seedfall event but, rather, the relative ranking of the seedfall events. This 

is independent of the site mean, and relies on the shape of the probability 

distribution of seedfall events being similar between species, which is a 

much more tenable assumption given the apparent reproductive synchrony 

within genera (Schauber et al. 2002).

The logistic regressions used a threshold set at the 70th percentile of seedfall 

to categorise high and low seedfall years. The setting of the threshold at 

this level was a matter of judgment; since seedfall is a continuous variable, 

setting any threshold is arbitrary (Kelly 1994). It is likely that the optimum 

threshold to achieve the desired management outcomes will vary between 

systems, depending on the particular characteristics of the site. Therefore, 

this choice could and should be revisited to establish limits for individual 

systems once we understand more about the biological significance of seedfall 

magnitude.
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 4 . 3  R I M U  P R E D I C T I O N S

Timely and accurate prediction of seedfall was a critical goal of this study. 

Neither of the models developed for rimu satisfy both of these criteria. The 

constrained model (Model 1) fails because it does not include the temperature 

during the fertilisation period (the summer of seedfall), which appears to 

explain a major component of the variance in the data; in particular, cool 

temperatures seem to account for extremely low fruit set in years in which 

fruit set might otherwise have been moderate. Hence, this model has poor 

predictive ability. The unconstrained model (Model 2) fails because it includes 

climatic variables from the fertilisation period, meaning that the predictions 

cannot be timely: ripe seed falls from the trees in the autumn following 

fertilisation; therefore, at best, predictions might be available 1–2 months 

in advance of seedfall.

The rimu model almost certainly involves some element of overfitting, and 

its applicability to other sites is questionable given only one dataset was 

available for the analysis. However, despite these expected handicaps, the 

unconstrained model gave very good prediction of seedfall at Codfish Island 

(Whenuahou). Admittedly, five data points are inadequate for a thorough test 

of the model’s generality; however, the results are encouraging.

 4 . 4  U S E  O F  T H E  M O D E L S  W I T H I N  A  L A R G E R 
F R A M E W O R K

The ability to predict seedfall of Nothofagus and Chionochloa is desirable for 

the management of these systems, as the predictions can be used to crudely 

predict the likelihood of rodent outbreaks; thus a prediction is being used 

to make a prediction. Clearly there are dangers in this approach, because 

the function that maps seedfall to rodent density is imperfectly understood, 

i.e. we do not completely understand what aspect of mast ecology drives 

rodent outbreaks. For Nothofagus forests, supra-abundance of seed is an 

appealing hypothesis (King 1983); however, it has also been suggested 

that mice in particular may, at least initially, be responding to increases 

in the number of leaf litter invertebrates that feed on the beech flowers 

(Fitzgerald et al. 1996; Alley et al. 2001), as the nutrient input into flowers 

is at least equal to that of the seeds (Alley et al. 1998). Should the second 

hypothesis be true, there is a danger that by focusing on the seeds, the 

importance of mast flowering events that do not translate into high seedfall 

will be ignored. The Nothofagus models predict total seedfall, not flowering, 

although in most cases it would be sensible to assume a close but imperfect 

correlation between the two. Managers should also be aware that smaller 

rodent outbreaks may occur outside mast years (M.G. Efford, University of 

Otago, pers. comm.).

The details of the dynamics of multi-trophic systems are important because 

they remind us of the uncertainty in using climatic variables to predict 

rodent density via the models of seedfall. Prediction failure could occur if 

either the climate model fails to accurately predict seedfall or if seedfall 

fails to accurately predict rodent density. For this reason alone, the models 
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should be embedded within a wider management framework that allows 

rapid intervention in the system should the chain of prediction fail at any 

point, or pullback should intervention prove unnecessary. This is particularly 

important for systems with high conservation values. Logically, the best way 

to provide this information is to directly measure rodent abundance using 

current best practice. The strength of the models is that they can predict 

high seedfall years in advance with a much higher success rate than if we 

made random predictions. Their weakness is that, because they are only 

models, they are imperfect representations of reality, and the predictions 

are only as good as the data used to generate them.

 4 . 5  I M P O R T A N C E  O F  S E E D F A L L  M O N I T O R I N G

The addition of previous seedfall to the models greatly improved their fit to 

the data. Previous seedfall is negatively correlated with future seedfall, which 

may, in part, reflect the internal resource dynamics within the plant. It may 

also partly reflect the structure of the data, in which there are few instances 

of double mast years due to the vagaries of the climate; high seedfall years 

should follow low seedfall years because they are rare events. Irrespective of 

the reason, the success of previous seedfall as a predictor presents a strong 

argument to support and extend existing seedfall monitoring programmes in 

areas where seedfall predictions are required.

Standardisation of the collection protocol would maximise the quality of 

the data that are collected. It is beyond the scope of this study to make 

specific recommendations on what this protocol should be, but a number of 

important issues need to be considered. First, sites should be selected that 

are representative of the forest or grassland habitat for which predictions 

are to be made. Second, there are a large number of issues surrounding 

the design of the sampling protocol, including what data to collect, when 

to collect it, how many sampling units are required, the design of those 

sampling units (e.g. trays), and where to locate them within the site 

(e.g. under isolated trees, in pure stands or along transects). Finally, a key 

issue is data management: the data should be stored in a system that allows 

easy retrieval by those requiring access to it.
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 5. Recommendations

Models for the prediction of seedfall in Nothofagus, Chionochloa and rimu 

have been developed. For successful implementation of these models, the 

following points should be considered:

1. For Nothofagus, the logistic regression model gives the best prediction 

of high seedfall years, although this model is clearly insufficient if 

predictions on the scale of seeds/m2 are required. For Nothofagus 

and Chionochloa, the average models give more balanced predictions 

(i.e. similar probabilities of failing to predict both high and low seedfall 

years) than the Kullback-Leibler best model as selected by AICc. This is 

perhaps more important in a conservation management setting, where the 

ability to accurately predict high years is critical.

2. For rimu, the unconstrained model (Model 2) is recommended for making 

accurate predictions about seedfall. Unfortunately, because of the critical 

importance of climate during fertilisation of the ovules, the predictions 

cannot be both timely and accurate. At the earliest, predictions from the 

unconstrained model will be available in February of the year of seedfall. 

Ripe rimu fruits begin to fall from late March through to May.

3. The models should be implemented within a wider management framework 

that allows failure in the model predictions to be detected early and rapid 

intervention where necessary. In practice, in systems where rodents are a 

concern, this will mean direct monitoring of rodent populations. This is 

critical where important conservation values are at risk should the models 

fail to accurately predict a high seedfall year.

4. Ongoing seedfall monitoring is an essential requirement at sites in which 

predictions are to be made. Models that did not include previous seedfall 

as a predictor performed relatively poorly. Seedfall monitoring should 

follow a standard seedfall monitoring protocol. 

5. There is a critical shortage of sites at which rimu seedfall is monitored. 

The number of sites monitored needs to be expanded, to develop more 

robust models of seedfall in rimu.
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  Appendix 1 

  D A T A  U S E D  I N  T H E  A N A L Y S I S

SPECIES SITE EASTING NORTHING ALTITUDE YEAR SOURCE OR

    (m) MIN MAX NO. OWNER

Chionochloa macra Mt Hutt 2392820 5740560 1070 1990 2000 11 Dave Kellya

Chionochloa conspicua Camp Creek   900 1979 2000 22 Ian Paytonb

Chionochloa pallens Camp Creek   900 1979 2000 22 Ian Paytonb

Chionochloa pallens Camp Creek   1250 1979 2000 22 Ian Paytonb

Chionochloa pallens Camp Creek   1650 1979 2000 22 Ian Paytonb

Chionochloa pallens Camp Creek   1250 1979 2000 22 Ian Paytonb

Chionochloa pallens Camp Creek   1430 1979 2000 22 Ian Paytonb

Chionochloa crassiuscula Camp Creek   1250 1979 2000 22 Ian Paytonb

Chionochloa crassiuscula Camp Creek   1650 1979 2000 22 Ian Paytonb

Chionochloa flavescens Camp Creek   1250 1979 2000 22 Ian Paytonb

Chionochloa flavescens Camp Creek   1430 1979 2000 22 Ian Paytonb

Chionochloa pallens Mt Hutt 2392820 5740560 1070 1986 2003 18 Dave Kellya

Chionochloa oreophila Camp Creek   1430 1979 2000 22 Ian Paytonb

Chionochloa oreophila Camp Creek   1650 1979 2000 22 Ian Paytonb

Chionochloa rubra Camp Creek   1100 1979 2000 22 Ian Paytonb

Chionochloa rubra Camp Creek   1100 1979 2000 22 Ian Paytonb

Chionochloa rigida Old Man Range 2215140 5533470 1220 1961 1974 14 Payton & Mark

        (1979)

Chionochloa pallens Takahe Valley 2088600 5534600 1190 1973 2003 31 Bill Leec

Chionochloa crassiuscula Takahe Valley 2088600 5534500 1160 1973 2003 31 Bill Leec

Chionochloa teretifolia Takahe Valley 2088500 5534800 1160 1973 2003 31 Bill Leec

Chionochloa rigida Takahe Valley 2090500 5534300 1160 1973 2003 31 Bill Leec

Chionochloa rubra Takahe Valley 2090600 5533400 900 1973 2003 31 Bill Leec

Chionochloa spiralis Takahe Valley 2091700 5532700 1000 1993 2003 11 Bill Leec

Dacrydium cupressinum Wanganui State 2302350 5790250 15 1954 1986 33 Norton & Kelly

 Forest, Harihari       (1988)

Dacrydium cupressinum Ianthe State  2320100 5800600 20 1970 1980 11 James & 

 Forest       Franklin (1978)

Dacrydium cupressinum Pureora State    0 1961 1967 7 Beveridge

 Forest       (1973)

Dacrydium cupressinum Codfish Island   0   0 Graeme Elliottd

 (Whenuahou)

Nothofagus fusca Rahu 2422890 5888600 290 1964 1976 13 Wardle (1984)/

        Franklin (1977)

Nothofagus truncata Orongorongo 2674860 5982500 130 1968 2002 35 Peter Berben/
 Valley        Phil Cowane

Nothofagus menziesii Landsborough 2214600 5689800 320 1997 2002 6 DOC (see 

        Graeme Elliottd)

Nothofagus solandri Craigieburn 2406500 5786000 900 1998 2002 5 DOC (see 

        Graeme Elliottd)

Nothofagus menziesii Hollyford 2125000 5594000 250 1975 1979 3 DOC (see 

        Graeme Elliottd)

Nothofagus solandri Dart 2140000 5601000 420 1999 2002 4 DOC (see 

        Graeme Elliottd)

Continued on next page
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a School of Biological Sciences, University of Canterbury, PB 4800, Christchurch 8140.
b Landcare Research, PO Box 69, Lincoln 7640.
c Landcare Research, Private Bag 1930, Dunedin 9054.
d Department of Conservation, Private Bag 5, Nelson 7042.
e Landcare Research, Private Bag 11052, Palmerston North 4442.
f Formerly Landcare Research, Private Bag 6, Nelson 7042.
g PO Box 29, Te Anau 9640.

Nothofagus menziesii Dart 2140000 5601000 420 1999 2002 4 DOC (see 

        Graeme Elliottd)

Nothofagus fusca Dart 2140000 5601000 420 1999 2002 4 DOC (see 

        Graeme Elliottd)

Nothofagus solandri Rotoiti 2498000 5933000 680 1997 2002 6 DOC (see 

        Graeme Elliottd)

Nothofagus menziesii Rotoiti 2498000 5933000 680 1997 2002 6 DOC (see 

        Graeme Elliottd)

Nothofagus fusca Rotoiti 2498000 5933000 680 1997 2002 6 DOC (see 

        Graeme Elliottd)

Nothofagus fusca Station Creek,  2448560 5889400 400 1969 1976 8 Franklin (1977)

 Maruia

Nothofagus solandri Craigieburn 2403820 5784830 1050 1965 2002 38 Rob Allenb 

Nothofagus solandri Craigieburn 2403370 5784680 1340 1965 2002 38 Rob Allenb

Nothofagus solandri Mt Thomas State 2451560 5780060 470 1966 2002 37 Rob Allenb

 Forest

Nothofagus menziesii Rahu 2422890 5888600 290 1964 1976 13 Franklin (1977)

Nothofagus menziesii Alton 2091150 5451100 240 1964 1976 13 Franklin (1977)

Nothofagus solandri Mt Misery 2482300 5920400  1974 1999 26 Pete Wilsonf

Nothofagus menziesii Mt Misery 2482300 5920400  1974 1999 26 Pete Wilsonf

Nothofagus fusca Mt Misery 2482300 5920400  1974 1999 26 Pete Wilsonf

Nothofagus menziesii Lillburn 2091100 5451280 260 1964 1969 6 Franklin (1977)

Nothofagus menziesii Rowallan 2091150 5451100 240 1964 1982 19 Wardle (1984)/

        Franklin (1977)

Nothofagus menziesii Princhester Creek,  2114600 5499900 640 1970 2002 33 DOC Te Anaug

 Takitimu Mts

Nothofagus menziesii Lake Eyles 2077000 5536000 880 1979 1987 9 DOC Te Anaug

Nothofagus solandri Takahe Valley 2093000 5532000 880 1979 2002 24 DOC Te Anaug

SPECIES SITE EASTING NORTHING ALTITUDE YEAR SOURCE OR

    (m) MIN MAX NO. OWNER

Appendix 1—continued



DOC Research & Development Series

DOC Research & Development Series is a published record of 
scientific research carried out, or advice given, by Department 
of Conservation staff or external contractors funded by DOC. 
It comprises reports and short communications that are peer-
reviewed.

Individual contributions to the series are first released on the 
departmental website in pdf form. Hardcopy is printed, bound, and 
distributed at regular intervals. Titles are also listed in the DOC 
Science Publishing catalogue on the website, refer www.doc.govt.nz 
under Publications, then Science & technical.


	Abstract
	1. Introduction
	2. Methods
	2.1 Seed data
	2.2 Climate data
	2.3 Analysis techniques
	2.3.1 Nothofagus and Chionochloa
	2.3.2 Rimu
	2.3.3 Model validation

	2.4 Phenology, selection of environmental predictors and a priori model specification
	2.4.1 Nothofagus
	2.4.2 Chionochloa
	2.4.3 Rimu


	3. Results
	3.1 Nothofagus
	3.2 Chionochloa
	3.3 Rimu
	3.4 Predictions for 2004/05
	3.4.1 Nothofagus
	3.4.2 Chionochloa
	3.4.3 Rimu


	4. Discussion
	4.1 Uncertainty in the predictions
	4.2 Species-specific predictions and the use of thresholds
	4.3 Rimu predictions
	4.4 Use of the models within a larger framework
	4.5 Importance of seedfall monitoring

	5. Recommendations
	6. Acknowledgements
	7. References
	Appendix 1
	Data used in the analysis


