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1. Introduction

This report provides recommendations for a sampling scheme for a mark-re-

capture study of Hamilton's frog (Leiopelma hamiltoni) on Stephens Island

in the Marlborough Sounds.This is a threatened species, and monitoring is

required for the next five years, with a view to ascertaining if the population
is steady, increasing or decreasing.

Recommendations are given for appropriate numbers of trips per year and

numbers of sampling nights per trip. Advice is also given about the sampling

intensity and methods, the records to keep, and the appropriate statistical

analyses to be used.

In the sections which follow, I have relied heavily on the previous studies by

Newman (1990), Brown (1994) and Thomson (1996), and on Newman's 1996
report. Most of the following sections refer to the frogbank population: the

frogpit population is discussed separately in Section 8.4.

2.

	

Sampling methods

It is intended to run a mark-recapture study, in which frogs are captured, given
individual marks, and returned to the population for subsequent recaptures
and identification. For mark-recapture analysis to be possible, each frog must

be marked at its first capture in a manner which will identify it at later cap-

tures. This will be achieved by a toe-clipping method, in which the particular

combination of toe-clips will identify it unambiguously.

On the frogbank, the sampling will be clone under, and on a strip each side of,

the boardwalk.The width of this strip should be fixed in advance: Newman's

(1990) use of a 1 m strip looks appropriate, and staying with that width will

make future results more easily compared with his work. I understand the
strip will be kept clear of the Muehlenbeckia vines to maintain visibility and

keep the sample numbers up.

I note that Thomson (1996) reported a strip of 1.5 m width being searched

since 1990, but used Newman's search area estimate of 140

based on a 1 m strip. Her density estimates should be adjusted to allow for
this.

3.

	

Concomitant information

Although a basic Cormack Jolly-Seber mark-recapture analysis (see Section 5)

does not use concomitant information like search effort and weather records,
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it is still desirable to record these extra details. This is because other meth-

ods of mark-recapture analysis (e.g. Huggins 1989,1991; Otis et al. 1987; Pollock

et at. 1984) often use these concomitant variables in the modelling, and it is
sensible to retain the option of these possibly more appropriate models later.

Also, if extremely bad luck with capture rates gives insufficient numbers for a

reliable mark-recapture analysis, with weather and effort information avail-

able it will be possible to fall back on count data and search-effort Poisson

models ("encounter sampling"), which are less powerful than mark-recapture

methods but would still yield some information.

Accordingly, each night of sampling should have search effort and appropri-

ate weather information recorded, as well as the captures. Newman (1990)

found that presence/absence of rain during the search, humidity and light

intensity were correlated with the numbers of frogs seen. Thomson (1990)

found humidity, wind direction and wind speed were relevant.

Similarly, records of weight, snout-vent length, grid references, and whether

found on rocks, vines, etc., are not strictly needed for the mark-recapture

analysis, but will provide useful extra information - for example, weight and

snout-vent length may help identify juveniles, thus giving some information

about age structure.

4.

	

Study design

The study will follow a plan in which a sequence of sampling sessions (or

trips) will take place each year, within each of which there will be several

successive nights of samples.

This samples-within-sessions method is called the robust design by Pollock

(1982). To use the data for a Cormack Jolly-Seber analysis, information within

each session is pooled to record which animals were captured at least once

on that trip. The robust design is recommended because:

The pooling within trips allows the capture probabilities to rise to lev-

els acceptable for a Cormack Jolly-Seber analysis. One night's sampling

would not be enough.

Each session (trip) may be used to provide an estimate of the current

population size based on closed population models, if enough captures

occur. This gives information about trap response and heterogeneity of

capture not available from the Cormack Jolly-Seber model.

Once field workers have gone to the island it makes economic sense

for them to stay several nights rather than one.

Recent models by Kendall et al. (1995) fully exploit the information

both within and between sessions, combining the closed and open popu-

lation models. I do not yet have programmes available to do the estima-
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tion, but will be working on them over the next year. Analysis using

these new models should be available by the end of the study.

5.

	

Methods of analysis

I recommend the Cormack Jolly-Seber model as appropriate for the frogbank
data, supplemented by Kendall et al. (1995) models. These newer models will
provide extra information about the population, although they are similar

enough to the Cormack Jolly-Seber model to be unlikely to change the esti-

mates much or provide more powerful tests.

The Cormack Jolly-Seber model, also known as the Jolly-Seber model, was de-

veloped by three authors, Cormack (1964), Jolly (1965) and Seber (1965). This

is an open population model which allows for additions (births and immigra-

tion) and deletions (deaths and emigration) between sampling sessions. It
makes the following assumptions:

At the time of the

of capture. This implies that there is an assumption of no trap-

response (trap-shyness or trap-happiness), and no difference of capture

probability caused by age differences, sex differences, sampling area in

relation to the frog's home range, etc. It does, however, allow for prob-

ability of capture to vary by time, which allows for weather effects.

The population is closed within the time of each session.

The probability of survival

same for all individuals. Again, this does not allow for different survival

rates due to age, sex, etc., but does allow for weather effects such as

poor seasons.

All individuals are marked uniquely at their first capture, and marks are

adequate for identification on recapture.

We also assume that all animals caught at the

alive to the population - this is not strictly necessary for a Cormack-

Jolly-Seber analysis, but I have assumed it for the power analyses in this

report.

One possible failure of the Cormack Jolly-Seber assumptions might occur if

there is a behavioural response to capture - e.g. shyness induced by the cap-

turing and marking process. If this is short-term, as has been found for the

Maud Island frogs (Bell & Pledger, in prep.), the Cormack Jolly-Seber analysis

will be unaffected. This is because it essentially uses only the first capture of

each frog within one session (probability

within the session (probability

will cause the Cormack Jolly-Seber population estimates to overestimate the

true population. Provided the robust sampling design is used, the recent meth-
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ods of analysis by Kendall et al. (1995) will enable this to be allowed for in

the model.

The Cormack Jolly-Seber estimates will also be biased if there is heterogene-

ity of capture, with some animals being more likely to be captured than oth-

ers. This could be a behavioural effect, with bold and timid animals, or could
be induced by the spatial effect of animals living at the edge of the sampling

area having a lower probability of capture. Where there is heterogeneity of

capture, the Cormack Jolly-Seber analysis will underestimate the true popula-

tion size. However, as we will be comparing population estimates over time,

the biases will approximately cancel, so that any trends in the population

will still be detected.

The assumption of equal survival rates for all animals over any given time

interval is often not a problem for such long-lived species as these frogs -
they may spend much of their lives at a fairly constant survival rate before

ageing sets in. There are goodness-of-fit tests available to check this assump-
tion (Pollock et al. 1985). This longevity also ensures the population is ap-

proximately closed within each session.

6.

	

A likelihood ratio test

The Cormack Jolly-Seber analysis is usually used to provide population esti-

mates and their standard errors through time. A graph of these estimates and

their confidence intervals versus time gives a visual impression of any possi-

ble trends in the population size, but since the estimates are correlated they

may not be used in statistical tests, like simple linear regression, which re-

quire independent data.

To test for a trend versus a constant population, it is necessary to go back to

the likelihood function for the original multinomial model. We may fit three

models to the data:

Model 1: Variable N. The population size N is assumed to vary through

ti me. This model fits a different N for each session time, allowing for

fluctuations. It is the model used for the Cormack Jolly-Seber estimates.

Model 2: A linear trend in N. The population size is assumed to vary

linearly through time. In this model, the population size is constrained

to lie on a straight line

ured say in months from the start of the study. Instead of fitting a dif-

ferent N at each time, there are two parameters to estimate, a and R and

these fix the N estimates.A

indicate a declining population.

Model 3: Constant N. The population is assumed to be constant. Only

one parameter N is estimated.
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Any two of these models may be compared by a (log) likelihood ratio test

(analysis of deviance test). Of particular interest for an endangered popula-

tion is the test of Model 2 (linear trend) versus Model 3 (constant popula-
tion). This tests

linear trend over time).

The test statistic is

= Residual deviance under Model 3- Residual deviance under Model 2,

where the residual deviance of a model is 2 x (maximised log likelihood un-

der the maximal model - maximised log likelihood under this model).

When a difference of deviances is taken, the maximal model part drops out. If

is true, the distribution of the test statistic is
the test is taken from a

The likelihood formula and an S+ programme for doing the test are in Appen-
dix 1.

7.

	

Power of the test

In planning a mark-recapture study, if preliminary estimates of population
size, probability of capture and survival rates are available, the power to de-

tect a trend in the population may be calculated for various sampling schemes.
I have done this for some possible schemes.

The power of the test is the ability to detect departures from the null hypoth-

esis - in this study, the probability of detecting a trend if in fact there is one.

The power depends on the size of the trend (the actual value of the slope of

the trend line), and on the chosen significance level at which the test will be
run.

Using estimates from Newman (1990) and Thomson (1996), I have assumed
that the population density will start at about 55/100

of capture per night will be about 0.1 (assuming autumn or winter sampling),

and that the annual survival rate is about 0.9. I have tried various sampling

schemes, various rates of decline of the population (as decline is of more

concern than increase), and various significance levels for the test.

To calculate the power, I used the method detailed in Lebreton et al. (1992).
For a population with the given sampling scheme and with the specified rate

of decline, I calculated the expected Cormack Jolly-Seber counts (n, m, r, z).

The test statistic is worked out for this population, and this gives the non-

centrality parameter for the (distribution

is true and there is really no decline,

is from the null distribution, the central chi-squared
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The power of the test is the probability of rejecting H o . This is thus the prob-
ability that a random variable from the

value from the central

level). This is illustrated in Figure 1.

In the case that

0 and the two distributions coincide, giving a power equal to a, the signifi-

cance level chosen for the test. As the population trend becomes stronger,

distribution moves to the right, and the power increases
(towards a maximum of 1). Some power curves are shown in Figure 2.

The choice of an a-level should reflect the relative consequences of Type I

when it is true, and accepting it when it is
false, respectively (Skalski and Robson 1992, pp21-22). Since an early warn-

ing of a possible decline in the population is of major importance here, a

should be set fairly high, perhaps about 15% or 20%, to give more power to
detect a decline. Skalski and Robson (1992) consider this reasonable for eco-
l ogical studies.

Tables 1 and 2 in Appendices show some values of the power for various rates
of decline in the population, for several sampling schemes and different sig-

nificance levels. It is clear that the total number of successful sampling nights

is of much more importance than the actual allocation of those nights into

sessions and samples per session. It seems best to plan a certain number of

trips per year, during autumn and winter, to keep the probability of capture

acceptably high, and to be flexible if possible about how long the trip lasts. If
there are good capture rates for the- first few nights, with say 20 different

animals seen over those nights (whether new or already seen on a previous
trip), the trip could be concluded. However, if for example dry weather low-

ers the capture rate to below about 5 per night, a longer time would be needed

to try to bring the number of different animals seen on this trip up to 20.

Also, the exact spacing in time of the trips is not important, so if there is the

possibility of delaying the trip until a long-term weather forecast indicates
rain, this would be a good strategy.

It is possible to tie in this power analysis with a cost/benefit approach pro-

vided that rough estimates are available for the cost per trip (e.g. boat hire),

the cost per person per trip (e.g. transport cost per individual), the cost per

day (e.g. equipment usage), and the cost per person per day (wages food).

With these estimates, one may either maximise statistical power for a fixed

cost or minimise the cost for a fixed power (see e.g. Millard and Lettenmeier

1986).
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8. Recommendations

8.1

	

SAMPLING DESIGN

Number of trips: The proposal to make about four trips per year to the

island seems good. These trips should be undertaken during autumn

and winter, to help ensure adequate sample sizes. The number of trips

could go above or below four without jeopardising the power to detect
a population change. The exact timing of each trip is not crucial - they

need not be evenly spaced. Some flexibility in planning the trips to

coincide with wet weather would be useful.

Number of nights per trip: Within each trip, there will be a number of

sampling nights. If there are 5 or more frogs captured each night, 5

nights per trip should be enough to ensure a respectable power of about

0.8 to detect a population density drop of 1 per year, from 55/100

Number of searchers: The number of searchers employed is important

only insofar as it may increase the number of frogs seen and so improve

the power of the statistical analyses. Any searchers would need to be

fully trained so as to spot the frogs successfully. If an unobservant

searcher were regularly put on one section of the boardwalk, frogs in

that area would have lower probability of capture, thus introducing

undesirable heterogeneity of capture.

Area to search: If time is running short for a sample, do not search only

part of the length of the boardwalk. This also would introduce hetero-

geneity of capture. It would be better to do a quick search of all the

area. This would lower the probability of capture that night for all the
frogs equally, thus retaining the homogeneity of capture rate required

by the Cormack Jolly-Sober model.

Frog handling: The frog must be marked on its first capture (unless it is

already identifiable from natural toe loss or previous toe clips by Brown
1994). The toeclip code given should avoid those already used by Brown.
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the start to 50/100

is set at 15%. The power is higher for a larger drop in population. The

main criterion for the number of nights per trip is that about 20 differ-

ent animals (excluding recaptures within that trip) should be seen. This

level of sampling could be achieved by choosing the trips to coincide

with wet weather, by taking several searchers, or by waiting and con-

tinuing sampling until the numbers of captures build up to the desir-

able level. Power is lost as the number of captures drops. Different

trips may have different numbers of nights: it is not necessary to have
the numbers of nights balanced.A minimum of three nights is needed

to exploit fully the chance of optional extra analyses using closed popu-

lation models.

at the end of the study, if the significance level



8.2

	

DATA TO RECORD

Each night:

Date of sample.

Weather information: Whether or not rain fell, humidity, light intensity,

and also (if possible) wind direction, wind speed and temperature.

Search effort information:The number of searchers, and number of min-
utes spent by each in actual search time (excluding handling time).

Each capture or recapture

Date of capture.

Toeclip code of frog (either the existing toeclip or the one just given).

Weight, measurements (e.g. snout-vent length). Presumably these need
not be recorded if the frog has already been seen on this trip.

Grid reference, whether found on vines, rocks, etc.

Any other information, e.g. scars, etc.

8.3

	

STATISTICAL ANALYSIS

At the end of the study (and also part way through, if desired), use the Cormack-

Jolly-Seber likelihood ratio test to test for a trend versus a constant popula-

tion. The usual Cormack Jolly-Seber estimates of population and survival and

their confidence intervals should also be calculated and graphed against time.

On the way through the study, for trips with sufficient data, closed popula-

tion estimates of Otis et al. (1975) will give progress reports on how the popu-

lation is faring. However, these are unlikely to have narrow enough confi-

dence bounds for any firm conclusions to be reached.

8.4

	

THE FROGPIT

All the previous discussion has centred on the frogbank population, which is
large enough for statistical testing to be done. In the frogpit, although search-

ing and toeclipping will yield interesting information, there will be no chance

of a conclusive statistical analysis (unless there is a population explosion in

the next year or so). During these few years, the data will provide descriptive

measures only, but there is a possibility of its being usefully incorporated into

later studies.
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10. Appendices

10.1

	

FORMULAE AND PROGRAMMES

Likelihood Formula

The likelihood formula for the Cormack-Jolly-Seber model is:

(Seber 1973 p.198), where

= number of sampling sessions

= number of unmarked animals in population at time i

= number of unmarked animals caught in

= probability of capture in

= probability an animal caught at

= probability an animal alive at

= number of animals with capture history
capture histories.

The number in the population at time
of marked animals alive in the population at time i. Estimates of the unknown
terms in the likelihood equation are found by maximising the likelihood, and
the further estimates are

For Model 2,
the start of the study.

For Model 3,

S+ Likelihood Calculations for Model 2

This S+- programme does the log likelihood calculations for M odel 2 (linear
trend):

Log likelihood functions for JS model, linear trend in N.

This function differs from the true log likelihood by a constant

which will cancel when comparisons of models are done.
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# INPUTS:

# K

	

= number of sessions.

# u.vect = K-vector of number of new captures in each sample.
# n.vect = K-vector of numbers captured in the samples.

# m.vect = K-vector of numbers already marked and captured
#

	

in the samples.

# r.vect = K-vector of numbers in sample i which will be

# recaptured.

# z.vect = K-vector of z counts.

# times.vect = vector of times of samples (e.g. months from

#

	

start of study).

# UNKNOWN PARAMETERS:

# alpha = intercept of N line.

# beta = slope of N line.

# p.vect = K-vector of probabilities of capture.

# phi.vect = (K-1)-vector of survival probabilities.

# CREATE THE LIKELIHOOD FUNCTION:

ll.jslin <- function(alpha,beta,p.vect,phi.vect)

if (min(p.vect)>O) U.vect <- alpha +

beta*times.vect - m.vect/p.vect else
U.vect <- alpha + beta*times.vect - m.vect

chi.vect <- rep(O,K)

	

# Calculate chi vector

chi.vect[K] <- 1

for (j in (K-1):1)

chi.vect[j] <- 1-phi.vect[j]+phi.vect[j]*

(1-p.vect[j+1])*chi.vect[j+l]

if ((min(U.vect-u.vect)>=0)&(min(p.vect)>O)&

(max(p.vect)<l)&(min(phi.vect)>O)&(max(phi.vect)<l))

loglik <- 0

for (i in 1:K)

loglik <- loglik + lgamma(U.vect[i]+1) -

lgamma(U.vect[i]-u.vect[i]+1) +

n.vect[i]*log(p.vect[i]) +

(U. vect [i] -u. vect [i] +z . vect [i] )

log(1-p.vect[i]) +

(n.vect[i]-r.vect[i])*log(chi.vect[i])

for (i in 1:(K-1))

loglik <- loglik+(z.vect[i+l]+m.vect[i+l])*

11



log(phi.vect[i])

} else loglik <- -1000000

loglik

# TO DO THE OPTIMISATION:

jslin.fit <- ms(" -11.jslin(alpha,beta,p.vect,phi.vect),start =

list(alpha=mean(n.vect)+50,beta=0,

p.vect=rep(0.5,K),phi.vect=rep(0.8,K-1)))

\end[verbatim}

\subsection*{S+ Likelihood Calculations for Model 3}

This is the programme for Model 3 (constant N):

\begin{verbatim}

# Log likelihood functions for JS model with N constrained

# to be constant.

# This function differs from the true log likelihood by a constant

# which will cancel when comparisons of models are done.

# INPUTS:

# K

	

= number of sessions.

# u.vect = K-vector of number of new captures in each sample.

# n.vect = K-vector of numbers captured in the samples.

# m.vect = K-vector of numbers already marked and captured

#

	

in the samples.

# r.vect = K-vector of numbers in sample i which will be recaptured.

# z.vect = K-vector of z counts.

# UNKNOWN PARAMETERS:

# N = constant number in population.

# p.vect = K-vector of probabilities of capture.

# phi.vect = (K-1)-vector of survival probabilities.

# CREATE THE LIKELIHOOD FUNCTION:

ll.jsconst <- function(N,p.vect,phi.vect)

if (min(p.vect)>O) U.vect <- N - m.vect/p.vect else

U.vect <- N - m.vect

chi.vect <- rep(O,K)

	

# Calculate chi vector

chi.vect[K] <- 1

for (j in (K-1):1)
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chi.vect[j] <- 1-phi.vect[j]+phi.vect[j]*

(1-p.vect [j+l])*chi .vect [j+l]

if ((N>=0)&(min(U.vect-u.vect)>=0)&(min(p.vect)>O)&

(max(p.vect)<l)&(min(phi.vect)>O)&(max(phi.vect)<1))

loglik <- 0
for (i in 1:K)

loglik <- loglik + lgamma(U.vect[i]+1) -

lgamma(U.vect[i]-u.vect[i]+1) +

n.vect[i]*log(p.vect[i]) +

(U.vect[i]-u.vect[i]+z.vect[i])*

log(1-p.vect[i]) +

(n. vect [i]-r. vect [i]) *log(chi . vect [i] )

for (i in 1:(K-1))

loglik <- loglik+(z.vect[i+l]+m.vect[i+l])*

log(phi.vect[i])

} else loglik <- -1000000

loglik

# TO DO THE OPTIMISATION:

jsconst.fit <- ms(" -ll.jsconst(N,p.vect,phi.vect),start =

list(N=max(n.vect)+50,
p.vect=rep(0.5,K),phi.vect=rep(0.8,K-1)))

S-}- Power Calculations

The programme used for the power calculations follows.

# Commands for finding power, using expected counts.

# Initialise with

# sig = sig level at which test is to be run (O.OS,O.l,etc.)

# phi = annual survival rate

# pcapt = prob. capt. on one night

# nyears = number of years of study

# sampy = number of samples per year

# Nstart = starting value of N

# sess.list = vector of numbers of sessions per year

# dec.list = vector of amount of decrease
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sig <- 0.25

phi <- 0.9

pcapt <- 0.1

nyears <- 5

sampy <- 20

Nstart <- 77

	

# This is for the 140 sq.m. area, not 100 sq.m.

sess.list <- c(4)

dec.list <- seq(0,4,0.2) # Density loss per year

power.mat <- matrix(rep(O,length(sess.list)*length(dec.list)),

length(sess.list),length(dec.list))

for (sl in 1:length(sess.list)) # nsess = no. sessions per year

nsess <- sess.list[sl]

nsamp <- round(sampy/nsess)

if (nsess==1) times.vect <- c(6,18,30,42,54)

# June sampling

if (nsess==2) times.vect <- c(4,7,16,19,28,31,40,43,52,55)

# Apr,Jul

if (nsess==3) times.vect <-

c(4,6,8,16,18,20,28,30,32,40,42,44,52,54,56)

# Apr,Jun,Aug

if (nsess==4) times.vect <-

c(3,5,6,8,15,17,18,20,27,29,30,32,39,41,42,44,51,53,54,56)

#Mar,May,Jun,Aug

if (nsess==6) times.vect <- c(3:8,15:20,27:32,39:44,51:56)
#Mar:Aug

K <- nyears*nsess

# Between-session survival rates

phi.vect <- rep(0,(K-1))

for (j in 1:(K-1))

phi.vect[j] <- phi**((times.vect[j+l]-times.vect[j])/12)

# Prob at least one capture per session.

probcapt <- 1 - (1-pcapt)**nsamp

# Vector of prob. capt. values
p.vect <- rep(probcapt,K)

# Calculate chi vector (prob. an animal caught at i is not
# seen again).

chi.vect <- rep(O,K)

chi.vect[K] <- 1

for (j in (K-1):1) chi.vect[j] <-

1-phi.vect[j]+phi.vect[j]*(1-p.vect[j+l])*chi.vect[j+l]

for (dl in 1:length(dec.list))

decrease <- dec.list[dl]

	

# Decrease by end of 5 years
# Construct vector of N values

beta <- -7*decrease/60

	

# beta is slope of N line
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# and has been adjusted for the 140 sq.m.

N.vect <- Nstart + beta*times.vect

# Find psi vector (prob. animal caught at i was not seen
# before).

psi.vect <- rep(O,K)

for (j in 2:K) psi.vect[j] <- psi.vect[j-1]*

N.vect [j-1] /N.vect [j]

# Calculate lambda vector.

lambda.vect <- rep(O,K)

lambda.vect[l] <- 1

for (j in 2:K) lambda.vect[j] <-

1-psi.vect[j]+psi.vect[j]*(1-p.vect[j-1])*

lambda.vect [j-1]

# Expected counts

U.vect <- lambda.vect*N.vect

n.vect <- p.vect*N.vect

u.vect <- lambda.vect*n.vect

m.vect <- (1-lambda.vect)*n.vect

r.vect <- (1-chi.vect)*n.vect

z.vect <- (1-lambda.vect)*(1-chi.vect)*

(1-p.vect)*N.vect

# Find lls under linear model and constant model.

Min <- ll.jslin(Nstart,beta,p.vect,phi.vect)

llconst <- ll.jsconst(mean(N.vect),p.vect,phi.vect)

# Find change in deviance

dev.change <- 2*(lllin - llconst)

# Calculate power, store in matrix.

crit.val <- gchisq((1-sig),l)

power.mat[sl,dl] <- 1 - pchisq(crit.val,l,dev.change)
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Figure 1. THE POWER OF THE TEST IS THE AREA UNDER THE
DISTRIBUTION TO THE RIGHT OF THE CRITICAL

VALUE DETERMINED BY THE CENTRAL DISTRIBUTION. IF
THE CRITICAL VALUE IS 3.84.

Figure 2. THE POWER TO DETECT A DECLINE IN POPULATION DEN-
SITY, ASSUMING A STARTING DENSITY OF
OF CAPTURE 0.1 PER NIGHT, WITH FOUR SESSIONS EACH OF FIVE
NIGHTS PER YEAR

PROBABILITY

NON-CENTRAL



Table 1. Powers for 12 Nights' Sampling per Year

Table 2: Powers for 24 Nights' Sampling per Year

Significance Number of Number of Annual Decline in Population
level of test Trips nights per trip Density per 100rn 2

0 1 2 3 4
0.05 1 12 . 0.5 . 426 . 916 . 999 1.000

2 6 . 05 . 418 . 911 . 999 1.000
3 4 . 0.5 . 416 . 911 . 999 1.000
4 3 . 05 . 41.5 . 910 . 999 1.000
6 2 . 0.5 . 41.5 . 910 . 999 1.000

0.10 1 12 . 10 . 5.52 . 955 1.000 1.000
2 6 . 10 . 543 . 952 1.000 1.000
3 4 . 10 . 541 . 952 1.000 1.000
4 3 . 10 . 540 . 951 1.000 1.000
6 2 . 10 . 540 . 951 1.000 1.000

0.15 1 12 . 1.5 . 632 . 971 1.000 1.000
2 6 . 1.5 . 623 . 969 1.000 1.000
3 4 . 15 . 622 . 969 1.000 1.000
4 3 . 15 . 621 . 969 1.000 1.000
6 2 . 15 . 611 . 969 1.000 1.000

0.20 1 12 . 20 . 690 . 980 1.000 1.000
2 6 . 20 . 652 . 979 1.000 1.000
3 4 . 20 . 681 . 979 1.000 1.000
4 3 . 20 . 650 . 9 78 1.000 1.000
6 2 . 20 . 680 . 978 1.000 1.000

0.25 1 12 . 25 . 73.5 . 986 1.000 1.000
2 6 . 25 . 728 . 985 1.000 1.000
3 4 . 25 . 727 . 984 1.000 1.000
4 3 . 25 . 726 . 95-1 1.000 1.000
6 2 . 2 .5 . 726 . 984 1.000 1.000

Significance Number of Number of Annual Decline in Population
level of test Trips nights per trip Density per 100m -z

0 1 2 3 4
0.05 1 24 . 05 1.000 1.000 1.000 1.000

2 12 . 05 . 905 1.000 1.000 1.000
3 8 . 05 . 900 1.000 1.000 1.000
4 6 . 05 . 897 1.000 1.000 1.000
6 4 . 05 . 897 1.000 1.000 1.000

0.10 1 24 . 10 1.000 1.000 1.000 1.000
2 12 . 10 . 948 1.000 1.000 1.000
3 8 . 10 . 945 1.000 1.000 1.000
4 6 . 10 . 943 1.000 1.000 1.000
6 4 . 10 . 943 1.000 1.000 1.000

0.15 1 24 . 15 1.000 1.000 1.000 1.000
2 12 . 15 . 967 1.000 1.000 1.000
3 8 . 15 . 964 1.000 1.000 1.000
4 6 . 15 . 963 1.000 1.000 1.000
6 4 . 15 . 963 1.000 1.000 1.000

0.20 1 24 . 20 1.000 1.000 1.000 1.000
2 12 . 20 . 977 1.000 1.000 1.000
3 8 . 20 .975 1.000 1.000 1.000
4 6 . 20 . 974 1.000 1.000 1.000
6 4 . 20 . 974 1.000 1.000 1.000

0.25 1 24 . 25 1.000 1.000 1.000 1.000
2 12 . 25 . 983 1.000 1.000 1.000
3 8 . 25 . 982 1.000 1.000 1.000
4 6 . 25 . 981 1.000 1.000 1.000
6 4 . 25 . 981 1.000 1.000 1.000
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