

Fish passage at water intake infrastructure

Fish Passage Restoration Symposium, 27th November 2013

Sjaan Bowie
Freshwater Team, Science & Capability, DOC
sjaanbowie@doc.govt.nz

Department of Conservation *Te Papa Atawhai*

What is a water intake?

- Consent by consent basis
- Limited best practice/ guidance

What is the problem?

- Deterioration or loss of habitat
- Diversion into unscreened or poorly screened intakes (entrainment)
- Physical damage on poorly operating screens
 (impingement)

Background

Received considerable research overseas

- Fish lost proportional to flow abstracted
- Fish salvage

Extreme example:

- >200,000 salmon juveniles & 2,500 trout lost each season in one unscreened take
- Significant losses of native fish

Multi-agency water intake working party

Environment Canterbury convened a group

2005

Funding was gained Used knowledge and local experience

2007

Reviews - sports and native fish Production of the guidelines

- Review
- •7 criteria
- Good practice examples

Species found in Canterbury

Biological characteristics

Size Migration Swimming ability

Lifecycle Water

column

Habitat movement

Key parameters identified that would protect freshwater fish:

- Structure placement
- Water velocity requirements at intakes
- Effective bypass and escape routes
- Maximum screening material opening size
- Monitoring and maintenance

Species of concern

Sports fish

Chinook salmon, brown & rainbow trout

Native fish

Migrating juveniles

Migrating juveniles

Threatened resident larvae & juveniles

The Criteria

- At, or as close as practical to, the point of water diversion from the main stem (<u>Location</u>)
- Approach velocity (<= 0.1 ms⁻¹)
- Sweeping velocity =/> approach (>0.5 ms⁻¹).
- Effective escape route (<u>bypass</u>) ensuring fish return undamaged (<u>connectivity</u>).
- Max. screen material opening size of 2-3 mm
- Effective maintenance and operation

Design Criteria – Location

- Variety of habitats
- Species composition varies
- Some species migrate throughout freshwater catchments
- Fish use different parts of the water column at different life stages

Positioned flush with the banks of the river or as close as possible to the water intake

Design Criteria – Approach and Sweep Velocity

 Approach velocity has to match swimming ability (sustained speed) of the weakest fish to encounter the screen.

 Sweep velocity has to be higher than approach velocity (at least twice) to minimise exposure of the fish to the screen face.

	Approach Velocity	Sweep Velocity
Native fish - general	<0.3ms-1	>0.5ms-1
Native fish – important spawning or migration pathway	≤0.1ms-1	
Sports fish	0.12ms-1	>0.24ms-1

Approach velocity of <0.1 ms⁻¹ Sweep velocity of >0.5 ms⁻¹

Design Criteria – **Bypass and Connectivity**

- Bypass entrance easy to find
- Downstream end of the intake, ideally in the cleft formed by the screen & bank
- Excluded fish need unimpeded passage/diversion back to the mainstem

Design Criteria – **Screen Material Opening size**

Minimum fish size

Native fish 3-20mm

Sports fish 25-30mm

GROUP	MESH Size (MM)	PROFILE BAR	PERFORATED PLATE
Native larval fish	0.3		
Whitebait (banded kokopu, inanga), common bully, shrimp	2.0		
Canterbury mudfish	2.0		
Glass eels/elvers	1.5		
Eels (adults)	20-25		
Sports fish	3	2	3.2

2-3 mm best

Design Criteria – Maintenance and Monitoring

- Regular
- 24 hours a day fish are moving within waterways at all times.

Monitoring Outcomes

- Effectiveness of the screen system in preventing fish entrainment
- No.'s of fish impinged/ entrainment during peak migration periods
- Ensuring unimpeded fish passage

2008

Public meetings

\$ for field trials

Trials currently being undertaken

2010now **Key Outputs**

- Update of NIWA guidelines
- Check list to monitor effectiveness of intakes using the 7 criteria

Trials

- No water intake meets all 7 criteria
- Pre-fish intake and bypass
- Release fish (salmon and trout)

ustainable

Ministry of Agriculture and Forestry

Flow Screen Bypass

Flat plate screen

Criteria	Criteria present	Result
Location	Υ	2
Approach velocity	Υ	\$
Sweep velocity	Υ	7
Bypass	Υ	₽
Connectivity	Υ	\$
Screen material opening size	Υ	7
Maintenance and Operation	Υ	7

Flow Bypass Intake Intake

Infiltration gallery

	1	
Criteria	Criteria present	Result
Location	Y	
Approach velocity	N	
Sweep velocity	N	
Bypass	Υ	
Connectivity	Υ	
Screen material opening size	Υ	Gravel
Maintenance and Operation	Υ	Z.

water race net bypass channel upper section drum screen lower section

Rotary Drum

Criteria	Criteria present	Result
Location	Y	76
Approach velocity	Y	9
Sweep velocity	Υ	9
Bypass	Υ	₽
Connectivity	Υ	9
Screen material opening size	Υ	9
Maintenance and Operation	Υ	?

Andar

Criteria	Criteria present	Result
Location	Υ	%
Approach velocity	Υ	₽
Sweep velocity	Υ	7
Bypass	Υ	9
Connectivity	N	7
Screen material opening size	Υ	₽
Maintenance and Operation	Υ	*

Control gate Rock weir Trap Bypass Trap

Rock Groyne Intake/ Permeable Weirs

Criteria	Criteria present	Result
Location	Y	
Approach velocity	Υ	?
Sweep velocity	Υ	
Bypass	Υ	
Connectivity	Υ	?
Screen material opening size	Υ	?
Maintenance and Operation	Υ	

Summary

- Know the values of the area
- Consider 7 key design criteria
- Water intakes can be designed to protect fish

http://www.irrigationnz.co.nz/irrigators/fish-screens/

Acknowledgements

- Sustainable Farming Fund
- Water Intake/Screening group (Irrigation NZ, ECan and Fish & Game)
- •NIWA

