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Executive summary 
 
Historically, basking sharks have been widely reported throughout New Zealand waters. While 
previously observed in large numbers, only a few individuals are now reported annually, primarily as 
fisheries bycatch. Basking shark observations are known to be highly variable across years, and their 
distribution and occurrence in the Northern Hemisphere have been shown to be influenced by 
environmental predictors such as thermal fronts, chlorophyll a (chl-a) concentration, and the 
abundance of prey (zooplankton). It is unclear if the recent disappearance of basking sharks in New 
Zealand is a result of changes in encounter rates with different fisheries operational methods changes 
in regional distribution of sharks, or a true decline in basking shark abundance.  
 
Correlative models that predict the occurrence of species in relation to environmental variables 
(termed species distribution models or habitat suitability models, HSMs) have become an important 
part of resource management and conservation biology. Such models are capable of filling in 
knowledge gaps on spatial and temporal distributions and predict areas of suitable habitat for widely 
distributed species. Here, basking shark habitat suitability (HSI) was predicted by combining 
functionally relevant, high‐resolution environmental and biotic (prey species) data (1 km2 grid 
resolution) and basking shark occurrence data (n = 369) that has been opportunistically recorded 
across New Zealand's Exclusive Economic Zone (EEZ).  
 
The relationship between environment variables, biotic variables and basking shark records was 
explored using ensemble predictions (Ensemble HSM) from Boosted Regression Tree (BRT) and 
Random Forest (RF) models. BRT and RF models were bootstrapped 200 times and an ensemble model 
was produced by taking weighted averages of the predictions from each model type. BRT and RF 
models performed well for predicting basking shark occurrence (AUC and TSS > 0.7). 
 
Nine variables were retained for the model, eight environmental predictors (Bathy, BPI broad, Chl-a, 
MLD, Turbidity, POCFlux, Slope, and SST) and one biotic predictor (Copepoda). The relative importance 
of each predictor and their influence on basking shark HSI were consistent across BRT and RF models. 
Vertical flux (POCFlux, 26.0%), slope (Slope, 14.1%), and turbidity (Turbidity, 10.6%) were the three 
most important variables in predicting basking shark HSI. Bathymetry (Bathy, 9.7%) and broadscale 
bathymetric position index (BPI broad, 9.6%) were also moderately important variables. High HSI was 
predicted in gently sloping and less complexe seafloor topographies with low turbidity and at two 
depths - very close to shore and at depths between 200 and 550 m. There was a weak relationships 
between HSI and copepod densities, with low HSI occurring with low levels of copepod densities, a 
peak in HSI at moderate copepod densities (10-20 counts per 5 nautical miles), and a plateau in HSI 
values at the highest levels of copepod densities (>25 counts per 5 nautical miles). HSI was lowest at 
moderate levels of chl-a concentration (Chl-a) (0.5-1.0 mg m-3) and highest at high chl-a concentration 
(>1.2 mg m-3). 
 
Areas of high habitat suitability for basking shark in New Zealand waters occurred along the continental 
slope, particularly along the 250 m contour along the North and South Islands; Mernoo Bank, Pukaki 
Rise, Puysegur, and around New Zealand’s offshore islands (Chatham Islands, Stewart Island, Bounty 
Islands, and Auckland Islands). Areas of high uncertainty (SD > 0.2) included most offshore waters north 
of 40°S, the deeper depths (>500 m) of the Hokitika Canyon, northern Chatham Rise, coastal waters 
off East Coast South Island (Canterbury Bight), Foveaux Strait (between the South Island and Stewart 
Island) and Puysegur. High uncertainty beyond the core area was reported along deep sea features 
north of New Zealand, including the Kermadec Ridge and Trench, Colville Ridge, Norfolk Ridge, and 
Lord Howe Rise. 
 



  

6 Exploring the drivers of spatial distributions of basking shark (Cetorhinus maximus) in the South Pacific 

26 November 2020 9.01 AM 

The outputs produced here will be useful for assessing threats and conservation needs (e.g. spatially 
explicit risk assessment), and providing guidance for future research efforts (e.g. areas of interest for 
sampling). This study has provided the first insight into habitat suitability for basking sharks, not only 
in the South Pacific, but in the Southern Hemisphere, using a novel approach by incorporating both 
environmental and biotic predictors into habitat models. However, caution should be considered given 
the relatively small sample size of occurrence data, lack of absence data, and potential spatial bias in 
sampling effort (use of fisheries dependent data). 
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1 Introduction 

The basking shark (Cetorhinus maximus) is a planktivorous coastal-pelagic species widely distributed 
in the temperate and tropical waters of the Atlantic and Pacific Oceans, and fringes of the Indian Ocean 
(southern Australia, Indonesia, South Africa) (Rigby et al., 2019). It is the second largest fish in the 
world after the whale shark (Rhincodon typus), reaching an estimated maximum size of at least 10 m 
total length (Weigmann, 2016). Basking sharks are known for their slow surface swimming behaviour 
but are also capable of vertical migrations to depths of 1,264 m (Gore et al., 2008). The species also 
engages in long distance migrations and has been recorded crossing the eastern to western Atlantic 
Ocean (Braun et al., 2018; Dewar et al., 2018; Johnston et al., 2019). Habitat use and movement 
patterns in the Pacific Ocean, and more specifically around New Zealand, however, are virtually 
unknown. Despite its large size, basking sharks remain elusive and data-poor in the South Pacific.  
 
Historically, basking sharks have been widely reported throughout New Zealand at latitudes between 
39°S and 51°S. Most records are from south of Cook Strait, including a number of records from the 
brackish waters of Lake Ellesmere (Te Waihora) (Francis and Duffy, 2002). Individuals have been most 
commonly reported in nearshore habitat on the east and west coast of the South Island, and in waters 
around the Snares and Auckland Islands during the spring and summer months (Francis, 2017). Off 
Banks Peninsula, aerial surveys for Hector’s dolphins (Cephalorhynchus hectori) conducted by the 
Department of Conservation reported large groups of over 100 individuals in the early 1990s (Francis 
and Duffy, 2002). Such large sightings have not been reported since; aerial surveys have failed to see 
basking sharks in recent years and only a few individuals are now reported annually, primarily as 
fisheries bycatch (Francis and Duffy, 2002; Francis, 2017).  
 
Basking sharks are susceptible to exploitation from fishing due to their naturally low population sizes, 
presumed slow growth rates, and low reproductive rates (Francis, 2017). The species has been subject 
to targeted fishing throughout their range, retained for their meat, skin, cartilage, liver oil, and high 
value fins (Rigby et al., 2019). While most targeted fisheries ceased in the 2000s, basking sharks are 
still taken as bycatch by a number of fishing gear types (e.g., trawl, trammel net, set net), and are 
threatened by interactions with recreational vessels and commercial shipping due to the species’ habit 
of spending time at the surface (Austin et al., 2019; Rigby et al., 2019). Population recovery has been 
low or negligible several decades after the cessation of fishing (Fowler et al., 2005). In 2002, basking 
sharks were listed in Appendix II of the Convention on International Trade in Endangered Species of 
Wild Fauna and Flora (CITES, (CITES, 2002), and in 2005, were listed in Appendices I and II in the 
Convention of Migratory Species (CMS). In 2019, basking sharks were assessed as globally Endangered 
by the International Union for Conservation of Nature (IUCN) Red List of Threatened Species (Rigby et 
al., 2019).  
 
Basking sharks have been protected in New Zealand waters since 2010. Within New Zealand, the 
species has been assessed as nationally Vulnerable under both IUCN Red List Criteria and the New 
Zealand Threat Classification System (NZTCS) (Duffy et al., 2018; Finucci et al., 2019). There are no 
specific management measures in place for basking sharks, apart from mandatory reporting of 
captures and the return of captured individuals to the sea. In recent years, the species is occasionally 
taken as bycatch in trawl and set net fisheries, with trawl bycatch typically occurring near or beyond 
the edge of the continental shelf (Francis and Smith, 2010; Francis, 2017). Knowledge of the species is 
reliant on fisheries observers. There are very little fisheries independent data available and estimates 
of basking shark bycatch likely underestimate the total New Zealand catches because they do not 
account for captures in unobserved set net fisheries and inshore trawl fisheries (Francis, 2017). 
Patterns in unstandardised bycatch rates imply basking sharks were captured in relatively large 
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numbers in the late 1980s and early 1990s, with peak bycatch occurring between 1988 and 1991 
(Francis, 2017). Following this period, observed bycatch rates declined dramatically. On the East Coast 
South Island, raw catch-per-unit-effort (CPUE) peaked in 1991 at 81.9 sharks per 1000 tows to no 
reported sharks from 2005–2016 (Francis, 2017). It is unclear if the recent decline in basking shark 
records in New Zealand is a result of a change to fishing methods that are less likely to encounter 
basking sharks, changes in regional availability of sharks, or a true decline in basking shark abundance 
(Francis, 2017).  
 
Basking shark observations are known to be highly variable across years, with gaps in regional sightings 
of up to 20 years (Dewar et al., 2018). Basking shark distribution and occurrence appears to be strongly 
linked to zooplankton/prey abundance at smaller spatial scales, but the drivers of broad scale 
distribution patterns are largely unknown (Sims, 2008). In the Northern Hemisphere, their distribution 
appears to be influenced by environmental predictors such as sea surface temperature (SST), thermal 
fronts, chl-a concentration, and the abundance of zooplankton (Cotton, 2005; Austin et al., 2019). 
Without sufficient information on species’ distribution, habitat use, and migratory patterns, it is 
difficult to determine the cause of variability in abundance.  
 
Correlative models that predict the occurrence of species in relation to environmental variables 
(termed species distribution models or habitat suitability models) have become an important part of 
resource management and conservation biology. Such models are capable of filling knowledge gaps 
on spatial and temporal distributions and predicting areas of suitable habitat for widely distributed 
species (Elith et al., 2006; Weber et al., 2017). By relating species’ sightings to environmental predictor 
variables, the abundance or probability of taxa presence can be estimated along with a 
characterisation of the environmental drivers of species distributions These models are becoming 
increasingly popular for use on marine species spanning large geographic and bathymetric ranges and 
have been employed on number of cetaceans (Stephenson et al., 2020), seabirds (Cleasby et al., 2020), 
and cartilaginous fishes, including basking sharks in the Northeast Atlantic (Austin et al., 2019).  
 
Here, we predict basking shark habitat suitability by combining functionally relevant, high‐resolution 
environmental and biotic (prey species) data (1 km2 grid resolution) with available basking shark 
occurrence data opportunistically recorded across New Zealand's Exclusive Economic Zone (EEZ). The 
distribution of prey, included here as zooplankton densities, often-overlooked, and at times, a key 
predictor of species’ distributions (Dormann et al., 2018). Understanding biotic interactions and their 
influence in driving species’ distributions is important for predicting into unsampled space because the 
trophic interactions that are at the core of species habitat use may be better  captured (e.g. more 
accurate predictions due to climate change) (Araújo and Luoto, 2007). Identifying factors driving 
basking shark distribution across the New Zealand marine region is important for better understanding 
species’ regional ecology and direct and inform future research and spatially-focused conservation 
efforts of this protected species.  
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2 Methods 

2.1 Study area 
The study area extends over 4.2 million km2 of the South Pacific Ocean within the New Zealand 
Exclusive Economic Zone (EEZ, ≈ 25 – 57°S; 162°E – 172°W; Figure 1). New Zealand waters contain 
highly productive zones of mixing between higher salinity, nutrient poor, warm, northern waters, and 
lower salinity, nutrient rich, cold, southern water, resulting in areas of high biological diversity which 
are suitable for a range of shark species (Bradford-Grieve et al., 2006; Leathwick et al., 2006; 
Stephenson et al., 2018; Stephenson et al., 2020). 
 

 
 

Figure 1: Map of the study region. (New Zealand Exclusive Economic Zone (EEZ), black dashed line), 
bathymetry and feature names used throughout the text modified from Stephenson et al., 2020, and the 
location of basking shark records used in this study (black dots).   
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2.2 Species records  
Habitat Suitability Models (HSMs) were used to analyse and spatially predict the distribution of basking 
shark habitat suitability (measured as habitat suitability index – HSI). Basking shark records (n = 401) 
were collated from various sources (Francis and Duffy, 2002; Francis, 2017; C.A.J. Duffy, unpublished 
data) and included records from commercial fisheries and observations pooled from public sightings, 
media reports, museum records, scientific surveys, and beach cast specimens. Records included 
information on date, number of individuals, geographic co-ordinates and source (where available) and 
were collected between 1889 and 2020. The data were groomed in previous work (Francis and Duffy, 
2002; Francis and Smith, 2010; Francis, 2017) to only keep records that were confirmed or probable 
basking shark observations that were within the New Zealand EEZ. The most recent records reported 
by fisheries observers were confirmed with photoidentification. Because of difficulties in correcting for 
differences in sampling methods, all catch records were converted into presence records (Elith et al., 
2011; Stephenson et al., 2018). To minimize the effect of spatial bias in the occurrence data, species 
records were aggregated spatially to a 1 km grid resolution (Aiello‐Lammens et al., 2015; Stephenson 
et al., 2020). Strandings and reports without an approximate date reference (month) were removed. 
The final dataset included presence records of basking sharks at 369 unique sampling locations.  

2.3 Environmental and biotic predictor variables 

To characterise variability in the New Zealand marine environment, a comprehensive dataset of spatial 

environmental variables were collated at a 1 km grid resolution , with each spanning the breadth of 

the New Zealand EEZ (Table 1 and Appendix A Table 1, further details are available in Stephenson et 

al. (2020)). In addition to environmental variables, spatial estimates of various zooplankton densities 

(Pinkerton et al., 2020) (inferred prey) were used as a biological predictor in the models (Appendix A, 

Table 1). Estimates of zooplankton densities did not cover the entire New Zealand EEZ (Appendix B, 

Figure 9). Areas lacking this information will simply represent the modelled relationship between 

basking shark records and the environmental variables. A preliminary examination of currently 

available zooplankton density estimates reveals these are likely to cover core areas of basking shark 

distribution. Of the available environmental and biotic variables, a subset was selected to be used in 

the SDMs (Table 1) based on model tuning described in section 2.4.2. Although most of the chosen 

environmental variables were static (e.g., bathymetry, Bathy), several variables were dynamic in time, 

representing mean monthly statistics (e.g., chlorophyll-a concentration, Chl-a, “temporal resolution” 

column in Table 1. 

Prior to fitting of the habitat suitability models, values for each environmental and biotic variable were 

extracted for locations of basking shark records by overlaying the records onto each of the 

environmental and biotic variable layers using the “raster” package in R (Hijmans and van Etten, 2012). 

For dynamic environmental variables (mean monthly environmental variables), recorded dates of 

basking shark records were used to extract respective values from the month the record was made. 
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Table 1: Spatial environmental and biotic predictor variables included in the final models, collated for 
species distribution models from Stephenson et al. (2020). Further details for each environmental variable are 
available in Stephenson et al. (2020) and details on the biotic variables are available in Pinkerton et al. (2020). 
All other environmental and biotic predictor variables are found in Appendix A.  

Abbreviation Full name Temporal 
resolution  

Description Units 

Bathy Bathymetry 

Static Depth at the seafloor was 
interpolated from contours 
generated from various sources, 
including multi-beam and single-
beam echo sounders, satellite 
gravimetric inversion, and others 
(Mitchell et al., 2012)  

m 

BPI_broad Bathymetric 
position 
index_broad 

Static Terrain metrics were calculated 
using an inner annulus of 12 km and 
a radius of 62 km using the NIWA 
bathymetry layer in the Benthic 
Terrain Modeler in ArcGIS 10.3.1.1 
(Wright et al., 2012). Bathymetric 
Position Index (BPI) is a measure of 
where a referenced location is 
relative to the locations surrounding 
it. 

m 

Chl-a Chlorophyll-a 
concentration  

Mean 
monthly 

A proxy for the biomass of 
phytoplankton present in the 
surface ocean (to ~30 m). Blended 
from a coastal Chl-a estimate (quasi-
analytic algorithm (QAA), local 
aph*(555)) and the default open-
ocean chl-a value from MODIS-Aqua 
(v2018.0) (Pinkerton, 2016) 

mg m-3 

MLD Mixed layer 
depth 

Mean 
monthly 

The depth that separates the 
homogenized mixed water above 
from the denser stratified water 
below. Based on GLBu0.08 hindcast 
results using a potential density 
difference of 0.030 kg m-3 from the 
surface. Models used are: (1) 
hycom: from day 265 (2008) to 
present; (2) fnmoc: from day 169 
(2005) to present; (3) soda: from day 
249 (1997) to end of 2004; (4) tops: 
from day 001 (2005) to 225 (2010) 
(Pinkerton, 2016) 

m 

POCFlux Downward 
vertical flux of 
particulate 
organic matter 
at the seabed  

Mean 
monthly 

Net primary production in the 
surface mixed layer estimated as the 
VGPM model (Behrenfeld and 
Falkowski, 1997); this table). Export 
fraction and flux attenuation factor 
with depth estimated by refitting 
sediment trap and thorium-based 
measurements to environmental 
data (VGPM, SST) as (Lutz et al., 
2002; Pinkerton, 2016) and using 
data from (Cael et al., 2018). 

mgC m-2 d-1 
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Turbidity Particulate 
backscatter at 
555 nm 
(previously 
used to 
generate 
'turbidity') 

Mean 
monthly 

Optical particulate backscatter at 
555 nm estimated using blended 
coastal and ocean products. Coastal: 
QAA v5 product bbp555 from 
MODIS-Aqua data. Ocean: 
bbp_555_giop ocean product 
(Werdell, 2019) . Result calculated 
as long-term (2002–2017) average.  

m-1 
 

Slope Slope Static Bathymetric slope was calculated 
from water depth and is the degree 
change from one depth value to the 
next. 

Degree 
 

SST Sea surface 
temperature 

Mean 
monthly 

Blended from OI-SST (Reynolds et 
al., 2002) ocean product and 
MODIS-Aqua SST coastal product. 
Long-term (2002–2017) average 
values at 250 m resolution. 

°C 

Copepoda Copepoda Static Copepods, including calanoid, other 
cyclopoid, and harpacticoid 
copepods across at least 50 species. 
Most abundant identified species 
include Calanus simillimus (29%) 
and Ctenocalanus citer (27%) 
(Pinkerton et al., 2020).  

Counts per 5 
nautical mile 
Continuous 
Plankton 
Recorder 
(CPR) 
segment 

 

2.4 Habitat Suitability Modelling (HSM) 

The relationship between environment variables, biotic variables and basking shark records was 

explored using ensemble predictions (Ensemble HSM) from Boosted Regression Tree (BRT) and 

Random Forest (RF) models. This approach limits dependence on a single model type or structural 

assumption and enables a more robust characterization of the predicted spatial variation and 

uncertainties (Robert et al., 2016).  

To estimate basking shark distributions, BRT and RF models require locations of both presences 

(occurrence records) and absences. Here, true absences (i.e. sample locations where no basking sharks 

were recorded) were not easily available for each sampling method (i.e. trawl tows, observer records, 

scientific surveys) and were not available for opportunistic records such as public sightings, media 

report, or museum records. Therefore, presence only modelling approaches using pseudo absences 

(i.e. locations where basking sharks were not recorded within our study area) was necessary.  

 Pseudo-absence selection  

A two-dimensional kernel density estimate (KDE) was produced using all basking shark locations 

(presence data) (Figure 2) using a cell size of 1km2. Within the KDE, the 95% percentage volume 

contour (minimum area in which 95% of the KDE value is lcoated) was selected (referred to in some 

cases as the home-range, (Calenge, 2006)), and used to create a probability grid from which pseudo-

absences were sampled according to the probability of grid weights (that is, where KDE values were 

high, the chance of selecting an absence was high) (Georgian et al., 2019). Pseudo-absences were 

generated through random selection of points from within the probability grid except within a 1 km-

grid radius of the presence localities. By selecting pseudo-absences in this manner, the pseudo-

absences were subject to the same sampling bias as the presence data. This method has been shown 

to significantly increase the accuracy of BRT and RF models (Elith et al., 2010; Cerasoli et al., 2017; 
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Georgian, 2019; Georgian et al., 2019). Following recommended best practice, the number of pseudo-

absences selected by month were equivalent to the number of monthly presences (Barbet‐Massin et 

al., 2012). 

 

 

Figure 2: The 95% kernel density estimate (KDE) probability grid (home-range). Areas outside the KDE 
probability grid are covered by crossed black lines. 

 Predictor variable selection 

In most cases, the inclusion of many variables (e.g. > 20 variables) in tree-based machine learning 

models (i.e., BRT and RF) is avoided because they only provide minimal improvement in predictive 

accuracy, and complicate interpretation of model outcomes (Leathwick et al., 2006). As the 

interpretation of drivers of distribution of basking shark was a key requirement, a reduction in the 

number of predictor variables was undertaken in order to produce a parsimonious model. A BRT model 

was initially fitted using all available environmental variables which was then subjected to a 

simplification process whereby environmental variables were removed from the models, one at a time, 

using the “simplify” function (Elith et al., 2006). This simplification process firstly assesses the relative 
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contributions of each variable in terms of deviance explained, with the lowest contributing variables 

removed from the model. The model is then refitted with the remaining environmental variables. The 

change in deviance explained that resulted from removing the variable was then examined and the 

process repeated until the deviance explained decreased by > 1% between removal of predictor 

variables. Bottom temperature was initially found to be a moderately important predictor in the model 

but was later removed based on the observation that basking sharks are often captured in mid-water 

trawls and thus, bottom temperature may not be representative of the species’ true habitat 

preference. Despite having a relatively small influence on the model, Chl-a was retained as this 

predictor was found to be an important predictor of basking shark distribution elsewhere (Austin et 

al., 2019).  

The final variables retained for modelling were Bathymetry, BPI broad, Chl-a, mixed layer depth (MLD), 

Turbidity, POCFlux, Slope, sea surface temperature (SST), and Copepoda (Table 1). Several 

environmental variables showed some co-linearity (Figure 3) however, all levels of co-linearity were 

considered acceptable for tree-based machine learning methods (Pearson correlation < 0.75, (Elith et 

al., 2010; Dormann et al., 2013). The ‘final’ environmental variables selected through this approach 

were also used in RF models (Appendix B Figure 1-Figure 9). 

 

Figure 3: Pearson’s correlation coefficients among the final environmental and biotic variables.  

 Boosted Regression Tree models 

BRT modelling combines many individual regression trees (models that relate a response to their 

predictors by recursive binary splits) and boosting (an adaptive method for combining many simple 
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models to give improved predictive performance) to form a single ensemble model (Elith et al., 2008). 

Detailed descriptions of the BRT method are available in Ridgeway (2007) and (Elith et al., 2008). All 

statistical analyses were undertaken in R (R Core Team, 2013) using the ‘Dismo’ package (Hijmans et 

al., 2017). BRT models were fitted with a Bernoulli error distribution, a tree complexity of 2, a learning 

rate of 0.01 (with parameters selected so as to fit trees for each bootstrapped model), a bag fraction 

of 0.7 and random 10-fold cross evaluation following recommendations from Leathwick et al. (2006) 

and Elith et al. (2008). The BRT method has been widely used in ecological applications and has 

performed well in previous studies of fish and cetacean distributions in New Zealand (Leathwick et al., 

2006; Compton et al., 2013; Stephenson et al., 2020) 

 Random Forest models 

RF models (Breiman, 2001) fit an ensemble of regression (abundance data) or classification tree 

(presence/absence data) models describing the relationship between the distribution of an individual 

species and some set of environmental variables (Ellis et al., 2012). Following environmental and biotic 

predictor variable selection using the BRT model, the RF model was tuned using the train function in 

the R package ‘caret’ (Kuhn, 2020). This function selects optimal values for the complexity parameters 

mtry (the number of variables used in each tree node), maxnodes (the maximum number of terminal 

nodes in each trees), and ntree (the number of trees to grow). RF models have previously been applied 

to demersal fish in the New Zealand EEZ (Stephenson et al., 2018). 

 Bootstrapping the models 

BRT and RF models were bootstrapped 200 times. A random ‘training’ sample consisting of the total 

presence records was drawn with replacement. A random sample of pseudo absence of equal number 

was drawn without replacement from the full set of available pseudo absences separated by month 

(Barbet‐Massin et al., 2012) and the models were run using these presence-pseudo absence records. 

Presence records which were not randomly selected were combined with a random number of pseudo 

absences and were set aside for independent assessment of model performance (referred herein as 

‘evaluation’ data). At each BRT and RF model iteration, geographic predictions were made using 

environmental predictor variables to a 1 km2 grid. Given that BRT and RF models used pseudo 

absences, we refer to our outputs as ‘habitat suitability’ (rather than the commonly used probability 

of occurrence) because we did not have information on ‘catchability’ or ‘sightability’ of basking sharks 

from the different sampling methods nor did we have estimates of species prevalence (Anderson et 

al., 2016; Georgian et al., 2019). HSI and a spatially explicit measure of uncertainty (measured as the 

standard deviation of the mean, SD) were calculated for each grid cell using the 200 bootstrapped 

layers.  

 Model performance  

BRT and RF model performance were evaluated using AUC (area under the Receiver Operating 

Characteristic curve) and TSS (True Skill Statistic). AUC is an effective measure of model performance 

and a threshold-independent measure of accuracy, while the TSS is a threshold-dependent measure 

of accuracy, but is not sensitive to prevalence (Allouche et al., 2006; Komac et al., 2016). AUC scores 

range from 0 – 1, with a score of 0.5 indicating model performance is equal to random chance, a score 

> 0.7 indicating adequate performance, and a score > 0.80 indicating excellent performance (Hosmer 

Jr et al., 2013). TSS, which takes into account Specificity and Sensitivity to provide an index ranging 

from -1 to +1, where +1 equals perfect agreement and -1 is no better than random, Allouche et al. 

(2006)). A TSS value > 0.6 is considered useful. (Allouche et al., 2006). Model fit metrics were calculated 

using both the ‘training’ dataset and the ‘evaluation’ dataset. The latter is considered a more robust 
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and conservative method of evaluating goodness-of-fit of a model than using the same data with which 

the model was trained (Friedman et al., 2001).  

 Ensemble models 

We produced an ensemble model by taking weighted averages of the predictions from each model 

type, using methods adapted from Oppel et al. (2012); Anderson et al. (2016); Rowden et al. (2017); 

Georgian et al. (2019); (Anderson et al., 2020). This adapted procedure derives a two-part weighting 

for each component of the ensemble model, taking equal contributions from the overall model 

performance (AUC value derived from the ‘evaluation’) and the uncertainty measure (SD) in each cell, 

as follows: 

𝑊1𝐵𝑅𝑇 =
𝑀𝑃𝑆𝐵𝑅𝑇

𝑀𝑃𝑆𝐵𝑅𝑇+𝑀𝑃𝑆𝑅𝐹
  and  𝑊1𝑅𝐹 =

𝑀𝑃𝑆𝑅𝐹

𝑀𝑃𝑆𝐵𝑅𝑇+𝑀𝑃𝑆𝑅𝐹
     

 

𝑊2𝐵𝑅𝑇 = 1 −
𝑆𝐷𝐵𝑅𝑇

𝑆𝐷𝐵𝑅𝑇+𝑆𝐷𝑅𝐹
  and  𝑊2𝑅𝐹 = 1 −

𝑆𝐷𝑅𝐹

𝑆𝐷𝐵𝑅𝑇+𝑆𝐷𝑅𝐹
   

 

𝑊𝐵𝑅𝑇 =
𝑊1𝐵𝑅𝑇+𝑊2𝐵𝑅𝑇

2
  and 𝑊𝑅𝐹 =

𝑊1𝑅𝐹+𝑊2𝑅𝐹

2
   

 

𝑋𝐸𝑁𝑆 = 𝑋𝐵𝑅𝑇 ∗ 𝑊𝐵𝑅𝑇 +  𝑋𝑅𝐹 ∗ 𝑊𝑅𝐹   

 

𝑆𝐷𝐸𝑁𝑆 = 𝑆𝐷𝐵𝑅𝑇 ∗ 𝑊𝐵𝑅𝑇 +  𝑆𝐷𝑅𝐹 ∗ 𝑊𝑅𝐹  

 

where 𝑀𝑃𝑆𝐵𝑅𝑇 and 𝑀𝑃𝑆𝑅𝐹 are the model performance statistics; 𝑋𝐵𝑅𝑇 and 𝑋𝑅𝐹 are the model 

predictions; 𝑆𝐷𝐵𝑅𝑇 and 𝑆𝐷𝑅𝐹 are the bootstrap SDs; and 𝑋𝐸𝑁𝑆 and 𝑆𝐷𝐸𝑁𝑆 are the weighted ensemble 

predictions and weighted SDs, respectively, from which maps of predicted species distribution and 

model uncertainty were produced. All spatial outputs from this work are provided at a 1km grid 

resolution and using the Albers Equal Area projection cantered at 175°E and 40°S (EPSG:9191), a 

standard format now accepted by the Department of Conservation (DOC) and Fisheries New Zealand 

(FNZ) (Wood et al., (in prep)).  

Two measures of spatially explicit uncertainty were produced: an estimate of our spatial coverage of 
species occurrences (the home-range (95% KDE)) and the standard deviation of the predicted basking 
shark distribution (i.e. model uncertainty). The calculated home-range (spatial coverage of species 
occurrences) was assumed to be indicative of basking shark distributions, and thus, is presumed to 
have more certain predictions of the species’ distribution. Where predictions were projected outside 
the home-range (i.e. where there are few or no sightings), it is assumed that the relationship between 
the environment and species’ records may be less robust and thus predictions outside the home-range 
contain some degree of uncertainty (e.g., similarly to the methods used in (Stephenson et al., 2020)). 
Standard deviation (SD) of the mean predicted habitat suitability were estimated through the 
bootstrapping methods outlined in section 2.4.5 and are provided as uncertainty estimates of basking 
shark distribution. 
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Ensemble model performance was assessed using AUC and TSS by comparing ensemble model 
predictions to all basking shark presence records and an equal number of randomly selected pseudo 
absence data. To ensure that the random selection of pseudo absence data did not provide misleading 
model permeance metrics, this procedure was iterated 50 times and mean AUC and TSS score 
calculated for the ensemble model (Barbet‐Massin et al., 2012).  
 
Partial dependence plots were made for the BRT and RF models to evaluate the effect of each predictor 
on species’ distribution by plotting the effect of the predictor on the response (basking shark presence) 
after accounting for the average effects of all other model predictors (Elith et al., 2008). Ensemble 
partial dependence plots were created with an average of the BRT and RF partial dependence plots.   

3 Results 

3.1 Basking shark records 
Most basking shark records (72%, n = 265) occurred in the spring and summer months (September to 
February). Since 2000, most records (84%, n = 103) have been from fishing events, with one aerial 
record and 19 opportunistic sightings. In the past decade, all but two of the 45 basking shark records 
were from fishing interactions.  

3.2 Model performance 
AUC and TSS scores using evaluation data were very similar between models, with the RF model 
performing slightly better than the BRT model (AUC: 0.92 and 0.89; TSS, 0.72 and 0.69 respectively, 
Table 2). Both indices indicated the models were useful in predicting basking shark occurrence (> 0.7). 
Measures of BRT and RF model performance scores had low variability (measured by the standard 
deviation of the mean), suggesting the models were consistently performing across bootstrap samples. 
Model fits between training data and evaluation data were similar, with model fits for the evaluation 
data slightly lower than the training data (as would be expected). The similarity of these fits provides 
some indication that the training data were not overfit in the models.  
 

Table 2: Mean cross-validated estimates of model performance for the bootstrapped boosted regression 
tree (BRT) and random forest (RF) models.  

 

 

Deviance 
explained 
(training 

data) 

Deviance 
explained 

(evaluation 
data) 

TSS 
(training 

data) 

TSS 
(evaluation 

data) 

AUC 
(training 

data) 

AUC 
(evaluation 

data) 
BRT model 0.60 ± 0.03 0.36 ± 0.10 0.92 ± 0.02 0.69 ± 0.05 0.95 ± 0.01 0.89 ± 0.03 
RF model 0.75 ± 0.02 0.52 ± 0.07 0.88 ± 0.02 0.72 ± 0.04 0.98 ± 0.00 0.92 ± 0.02 

 

3.3 Variable selection and contribution 
Nine variables were retained for the model, eight environmental predictors (Bathy, BPI broad, Chl-a, 
MLD, Turbidity, POCFlux, Slope, and SST) and one biotic predictor (Copepoda). The relative importance 
of each predictor and their influence on basking shark habitat suitability were consistent across BRT 
and RF models (Appendix C Figure 10, Figure 11). Vertical flux (POCFlux, 26.0%), slope (Slope, 14.1%), 
and turbidity (Turbidity, 10.6%) were the three most important variables in predicting basking shark 
habitat suitability (Figure 4). Bathymetry (Bathy, 9.7%) and BPI broad (BPI broad, 9.6%) were also 
moderately important variables. There was a strong positive relationship of predicted basking shark 
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HSI with vertical flux, highest in areas where vertical flux was 20 mgC m-2 d-1 or greater than what would 
be expected for the given depth. High HSI was predicted in gently sloping and less complex seafloor 
topologies with low turbidity. Two depths strata had high HSI - nearshore depths and depths between 
200 and 550 m. A less clear relationship was observed between HSI and sea surface temperature (SST) 
and mixed layer depth (MLD), with low HSI occurring between temperatures of 12.5°C and 15°C and 
in areas where the mixed layer depth was approximately 75 m. There was a weak relationships 
between HSI and copepod (Copepoda) densities, with low HSI occurring with low levels of copepod 
densities, a peak in HSI at moderate copepod densities (10-20 counts per 5 nautical miles), and a 
plateau in HSI values at the highest levels of copepod densities (>25 counts per 5 nautical miles). HSI 
was lowest at moderate levels of chl-a concentration (Chl-a) (0.5-1.0 mg m-3) and highest at high chl-a 
concentration (>1.2 mg m-3). 
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Figure 4: Partial dependence plots of the mean boosted regression tree (BRT) and random forest (RF) models for the nine variables, showing the influence of 
each predictor variable on the response. Variables are ordered by influence as indicated in top left hand of plots. Shaded area represents 95% confidence interval.
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3.4  Predicted basking shark distributions  

Areas of high habitat suitability for basking sharks in New Zealand waters occurred along the 

continental slope, particularly along the 250 m contour along the North and South Islands, Mernoo 

Bank, Pukaki Rise, Puysegur, and around New Zealand’s offshore islands (Chatham Islands, Stewart 

Island, Bounty Islands, and Auckland Islands) (Figure 5, Figure 6). Within the home-range, areas of high 

uncertainty (SD >0.2) included most offshore waters north of 40°S, the deeper depths (>500 m) of the 

Hokitika Canyon, northern Chatham Rise, coastal waters off ECSI (Canterbury Bight), Foveaux Strait 

(between the South Island and Stewart Island) and Puysegur (Figure 7). The North Island and features 

further from the continental shelf, including Chatham Rise were outside of the estimated home-range. 

In addition, moderate - high uncertainty (SD > 0.2) beyond the home-range was reported along deep 

sea features north of New Zealand, including the Kermadec Ridge and Trench, Colville Ridge, Norfolk 

Ridge, and Lord Howe Rise (Figure 7). 

 

Figure 5: The predicted habitat suitability index (HSI) of basking shark in the New Zealand Exclusive 
Economic Zone (EEZ) modelled using the bootstrapped ensemble models. Areas outside 95% kernel density 
estimate (KDE) probability grid indicating lower confidence that can be placed in the predicted habitat 
suitability are covered by crossed black lines. 
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Figure 6: The predicted habitat suitability index (HSI) of basking shark in the New Zealand Exclusive 
Economic Zone (EEZ) modelled using the bootstrapped ensemble models for A) West Coast South Island; B) 
East Coast South Island; C) south of South Island including Puysegur and Stewart Island; D) Chatham Islands; 
and E) Auckland Islands. Areas outside 95% kernel density estimate (KDE) probability grid indicating lower 
confidence that can be placed in the predicted habitat suitability are covered by crossed black lines. Note that 
the Chatham Islands (D) is outside the KDE probability grid estimate. 
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Figure 7: Standard deviation of the predicted habitat suitability index (HSI) of basking shark in the New 
Zealand Exclusive Economic Zone (EEZ) modelled using the bootstrapped ensemble models. Areas outside 95% 
kernel density estimate (KDE) probability grid indicating lower confidence that can be placed in the predicted 
probability occurrence are covered by crossed black lines. 

 

4 Discussion 
This study has provided the first insight into habitat suitability for basking sharks in the South Pacific 
and the Southern Hemisphere. Here, we have used a novel approach to assess habitat suitability by 
incorporating both temporally dynamic environmental (n = 8) and biotic (n = 1) predictors into the 
ensemble models. The BRT and RF models had good predictive power (AUC and TSS > 0.7) and both 
models performed similarly with low variability in the model fit metrics. The outputs produced here 
will be useful for assessing risk to fisheries and conservation needs (e.g. spatially explicit risk 
assessment), as well as providing guidance for future research efforts (e.g. areas of interest for 
sampling). However, caution should be considered given the relatively small sample size of species 
presences and lack of true absence data. 



  

Exploring the drivers of spatial distributions of basking shark (Cetorhinus maximus) in the South Pacific  23 

26 November 2020 9.01 AM 

4.1 Drivers of basking shark distribution  
Basking shark habitat suitability was largely influenced by variables representing ocean processes. 
Areas with high levels of vertical flux of particulate organic matter at the seabed (net primary 
production in the surface mixed layer) were most influential – which is likely indicative of high levels 
of primary production and prey density at the seafloor. In the Northeast Atlantic, basking sharks are 
often observed in shallow, highly productive coastal waters during spring and summer months where 
they feed on zooplankton blooms (Sims, 2008). Movement patterns within New Zealand waters are 
unknown but given the complexity of the regional marine environment and little population 
differentiation across global regions (Lieber et al., 2020), it is plausible basking sharks also partake in 
large migrations in New Zealand over prolonged periods of time. The inclusion of dynamic (mean 
monthly) environmental variables here may indicate seasonal patterns of basking shark distribution, 
with both inshore and offshore regions highlighted as areas of high habitat suitability. This is 
particularly evident in the bimodal effect of the bathymetry predictor, where basking shark habitat 
suitability was observed to be highest in very shallow depths (<100 m), and again at depths between 
200 and 500 m. 
 
While bathymetry (and slope) were also found be important predictors, their effect may be partially 
influenced by fisheries availability (see below). Basking sharks have been shown to dive as deep as 
1264 m and have been documented at depths of 600–1100 m (Francis and Duffy, 2002; Gore et al., 
2008; Doherty et al., 2017). The species has also been shown to follow distinct water masses at depth, 
remining at depths of 250 m or more for months without coming to the surface (Braun et al., 2018; 
Dewar et al., 2018). Basking sharks are known for complex diel vertical movements, which are thought 
to be influenced by shifts in prey availability and oceanography (Sims et al., 2005; Dewar et al., 2018). 
In well-stratified deep waters, basking sharks exhibit normal diel vertical movements (shallow depths 
at night, deeper depths during daylight), while sharks occupying inshore, inner-shelf areas near 
thermal fronts conducted reverse diel vertical movements (shallow depths during the day, deeper 
depths at night) (Sims et al., 2005). This may explain, at least in part, why more contemporary records 
occur in fisheries operating during daylight hours (when sharks are occurring at their preferred deeper 
depth range).  
 
Thermal preference had relatively minimal influence on basking sharks. Basking sharks appear to have 
a broad thermal range and are therefore relatively unrestricted by temperature (Sims et al., 2003). 
They can cross tropical regions by submerging into deeper, colder water (Skomal et al., 2009) and one 
individual was encountered in tropical waters off Indonesia (Fahmi and White, 2015). While sea 
temperatures may have minimal effect on basking sharks, processes associated with sea surface 
temperatures that are expected to shift with climate change might. By 2100, climate change 
projections predict sea surface temperature will increase by 2.5°C, which in turn is predicted to lead 
to declines in surface mixed layer depth (by 15%), primary production (4.5%) and particle flux (12%); 
with the largest changes in macronutrients predicted in eastern Chatham Rise and southern Sub-
Antarctic waters (Law et al., 2018). Such changes in the marine environment may not only reduce food 
availability for basking sharks, but may also alter their distribution. Basking shark movement patterns 
have been linked to shifts in prey availability and oceanography (Sims et al., 2005; Gore et al., 2008; 
Dewar et al., 2018). One tagged individual was shown to remain in area with putative upwelling and 
high abundance of phytoplankton in Western Atlantic regions for up to a month at a time (Gore et al., 
2008). In the Northeast Atlantic, a northward shift in basking shark distribution in response to long-
term zooplankton declines was found to correspond with declines in basking shark catch in Irish 
fisheries from 1948 to 1975 (Sims and Reid, 2002).  
 
The biotic predictive layers included here were found to have lower influence on habitat suitability 
compared to some of the environmental predictors. Prey availability is highly patchy and temporally 
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variable; thus, it is possible a static variable reflecting prey abundance was unable to accurately 
represent the spatial distribution of prey. However, the inclusion of biotic predictors in the model is 
important in understanding species’ relationship with the marine environment in unobserved space 
and has been identified as a potential link in understanding effects in climate change. Although prey 
preference for New Zealand sharks is unknown, there appears to be some relationship to copepod 
abundance, as seen in the North Atlantic (Sims and Merrett, 1997). Chl-a concentration, often used as 
an index of phytoplankton abundance (primary production) and strongly liked to primary consumers 
such as copepods, was predicted here to positively influence basking shark HSI. In recent decades, 
dramatic shifts in chl-a concentration have been reported the South Pacific and the Southern Oceans; 

significant declines were observed in spring and summer months in the South Pacific from 1979–2000 
and significant increases linked to extreme summer marine heatwaves in the Southern Ocean between 
2002 and 2018 (Gregg and Conkright, 2002; Montie et al., 2020). Similar models used in this project 
could be explored to predict basking shark distribution response to future climate change forecasting.  
 

4.2 Basking shark habitat suitability in New Zealand 
Areas of high basking shark habitat suitability included the east and west coasts of the South Island, 
Puysegur, and southern edge of Campbell Plateau. Some areas of Chatham Rise, specifically around 
Mernoo Bank and off the southern slope of Pitt Island (Chatham Islands), were also identified as areas 
of high habitat suitability. Much of Chatham Rise, however, was outside the home-range and thus 
holds a degree of uncertainty. Chatham Rise is a known hotspot for chondrichthyan diversity in New 
Zealand waters (Finucci et al. in prep), but interestingly, basking sharks have very rarely been reported 
from here. Star Keys, a group of five rocky islets approximately 12 kilometres east of Pitt Island, is a 
documented hotspot for white sharks (Carcharodon carcharias) (Duffy et al., 2012) and their presence 
may perhaps deter basking sharks from remaining in the region. Alternatively, Chatham Rise, as well 
as Puysegur, have relatively low densities of copepods (see Appendix B Figure 9), and may not be 
optimal feeding grounds for basking sharks.  
 
Given the long temporal span (121 years) of the data, model predictions may be more representative 
of past, and not current, suitable habitat for basking sharks in New Zealand waters. Some predicted 
inshore habitat suitability was likely influenced by past inshore sightings, particularly around the North 
Island. Public sighting of basking sharks have not been reported around northern New Zealand since 
the early 2000s, despite regular sightings of other large marine megafauna in the region (e.g.(Duffy, 
2002; Duffy and and Tindale, 2018) and targeted offshore surveys (Zaeschmar et al., 2020). In addition, 
some inshore regions are unlikely to be attractive to basking sharks as they overlap with the 
distribution of globally known predators, such as white sharks in Kaipara harbour, orcas (Orcinus orca) 
(widespread around New Zealand), and sperm whales (Physeter macrocephalus) off Kaikoura (Francis, 
1996; Sagnol et al., 2015; Stephenson et al., 2020). 
 
There were a number of areas where the spatially explicit uncertainty (measured as the SD) was 
relatively high, indicating the relationship between basking sharks and the environment are more 
uncertain. These areas, such as the Cook Strait, northern Chatham Rise, and Foveaux Strait, are where 
few basking shark sightings where available. Uncertainties regarding the most northern predictions of 
habitat (north of 40°S) may, in part, be explained by a lack of information on copepod density north of 
40°S (Pinkerton et al., 2020). Differences in habitat suitability among the sexes or size classes, a 
common observation among shark species, were not examined at this time due to the relatively small 
sample size of basking sharks across the region.  
 
The estimate of spatial coverage of species occurrences (top 95% of the KDE of basking shark 
occurrences) provides a representation of the likely geographic (and in turn environmental) space 
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occupied by basking sharks within New Zealand waters. Predicted distribution outside of this ‘home-
range’ area should be treated with caution as the prediction will not be underpinned by occurrence 
records and thus represents prediction into unsampled space. In this study, environmental threshold 
reflects the distribution of presences only – and thus retain any spatial biases associated with these 
datasets. In particular, the spatial distribution of presences will be related to the distribution of fishing 
effort and human population centres (for opportunistic sightings) and may not be accurate 
representation of hotspots. However, using the top 95% of the KDE of basking shark occurrences as an 
estimate of home-range provides a conservative estimate of the species space use that is useful in 
determining when modelled predictions are occurring outside of sampled environmental space. This 
provides a meaningful threshold with which to classify broad areas as ‘uncertain’. 

4.3 Future directions 
The lack of basking shark records in recent years highlights the need to better understand the 
disappearance or lack of detection of the species from New Zealand waters. However, without 
dedicated surveys and research efforts, and the paucity of fisheries-independent data, current records 
are reliant on interactions with fisheries (Francis, 2017). Our knowledge of New Zealand basking shark 
distribution occurs in areas of relatively high historic and current trawl fishing effort (Baird et al., 2018). 
Most basking shark interactions occur during the spring-summer months, corresponding to when 
fishing vessels target commercially important species, such as spawned cohorts of arrow squid 
(Nototodarus sloanii) (Hurst et al., 2012). As a protected species, it is mandatory to report basking 
shark interactions, but observer coverage is relatively low in some sectors, particularly within inshore 
fisheries and it is suspected that these interactions are underestimated (Francis, 2017). Understanding 
habitat use will assist in assessing risk to fishing activities and could be incorporated into management 
frameworks such as spatially explicit risk assessment (Large et al., 2019).  
 
Identifying areas of high habitat suitability will assist in decision making processes for future research 
efforts. Previous research has identified the need to tag free-swimming basking sharks to better 
understand species movement, habitat use, and interactions with fisheries (Francis, 2017). To do so, 
this will require the ability to find individuals at the surface in an accessible location. The total South 
Pacific basking shark population size is unlikely to be high; in the Northeast Atlantic, basking shark 
numbers likely do not exceed 10,0000 individuals (Lieber et al., 2020). This may make species’ 
detection more difficult in the vast marine space of New Zealand’s EEZ. Aerial surveys have successfully 
detected New Zealand basking sharks previously, and such surveying has been useful for estimating 
regional population sizes (Francis and Duffy, 2002; Westgate et al., 2014). However, if basking sharks 
are not feeding, they may travel in subsurface habitat and may therefore go undetected (Hawkes et 
al., 2020). By identifying areas of high habitat suitability, research efforts can be directed to specific 
areas of interest. For example, the Auckland Islands has been identified with high habitat suitability for 
basking sharks. This area is also known to be a hotspot for southern right whales (Eubalaena australis) 
during the Austral winter months (Rayment et al., 2015). Southern right whales follow the Subtropical 
Front (STF), a continuous feature within the Southern Tropical Convergence at latitudes 39° – 42°S, 
characterized by elevated primary productivity (Mackay et al., 2020). Southern Ocean oceanographic 
fronts have been identified as important foraging areas for a range of marine predators (Bost et al., 
2009) and may also be important for basking sharks. More at-sea distribution data is required to 
understand habitat use, threat overlap, and population status throughout the New Zealand and South 
Pacific region. 
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Appendix A Environmental and biotic variables 

Table 1: Spatial environmental and biotic predictor variables collated for species distribution models 
from Stephenson et al. (2020) and not included in the final model. Further details for each environmental 
variable are available in Stephenson et al. (2020) and details on the biotic variables are available in Pinkerton 
et al. (2020).  

 

Abbreviation Full name Temporal 
resolution  

Description Units Reference 

Beddist 
Benthic 
sediment 
disturbance  

Static One-year mean value of friction 
velocity derived from (1) hourly 
estimates of surface wave statistics 
(significant wave height, peak wave 
period) from outputs of the 
NZWAVE_NZLAM wave forecast, at 
8-km resolution, (2) median grain 
size (d50), at 250 m resolution, (3) 
water depth, at 25-m resolution. 
Benthic sediment disturbance from 
wave action was assumed to be zero 
where depth ≥ 200m. 

ms-1 

 

BotNi Bottom nitrate 

Static Annual average water nitrate 
concentration at the seafloor (using 
NZ bathymetry layer) based on 
methods from (Reynolds et al., 
2002). The oceanographic data used 
to generate these climatological 
maps were computed by objective 
analysis of all scientifically quality-
controlled historical data from the 
Commonwealth Scientific and 
Industrial Research Organisation 
(CSIRO) Atlas of Regional Seas 
database (CARS2009, 2009).  

umol l-1 

 

BotOxy 
Dissolved 
oxygen at 
depth 

Static Annual average water oxygen 
concentration at the seafloor (using 
NZ bathymetry layer) based on 
methods from (Reynolds et al., 
2002). Oceanographic data from 
(CARS2009, 2009). 

ml l-1 

 

BotPhos 
Bottom 
phosphate 

Static Annual average water phosphate 
concentration at the seafloor (using 
NZ bathymetry layer) based on 
methods from (Reynolds et al., 
2002). Oceanographic data from 
(CARS2009, 2009). 

umol l-1 

 

BotSal 
Salinity at 
depth 

Static Annual average water salinity 
concentration at the seafloor (using 
NZ bathymetry layer) based on 
methods from (Reynolds et al., 
2002). Oceanographic data from 
(CARS2009, 2009). 

psu 
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BotSil Bottom silicate 

Static Annual average water silicate 
concentration at the seafloor (using 
NZ bathymetry layer) based on 
methods from (Reynolds et al., 
2002). Oceanographic data from 
(CARS2009, 2009).  

 umol l-1 

 

BotTemp 
Temperature 
at depth 

Static Annual average water temperature 
at the seafloor (using NZ bathymetry 
layer) based on methods from 
(Ridgway et al., 2002). 
Oceanographic data from 
(CARS2009, 2009). 

°C km-1 

 

BPI_fine BPI_fine 

Static Terrain metrics were calculated 
using an inner annulus of 2 km and a 
radius of 12 km using the NIWA 
bathymetry layer in the Benthic 
Terrain Modeler in ArcGIS 10.3.1.1 
(Wright et al. 2012). Bathymetric 
Position Index (BPI) is a measure of 
where a referenced location is 
relative to the locations surrounding 
it. 

m 

 

Chl-a.Grad 

Chlorophyll-a 
concentration 
spatial 
gradient 

Mean 
monthly 

Smoothed magnitude of the spatial 
gradient of annual mean Chl-a. 
Derived from Chl-a described above. 

mg m-3 km-1 

 

DET 
Detrital 
absorption 

Mean 
monthly 

Total detrital absorption coefficient 
at 443 nm, including due to coloured 
dissolved organic matter (CDOM) 
and particulate detrital absorption. 
Estimated using quasi-analytic 
algorithm (QAA) applied to MODIS-
Aqua data, blended with 
adg_443_giop ocean product 
(Werdell, 2019). 

m-1 
 

 

Ebed 
Seabed 
incident 
irradiance 

Mean 
monthly 

Broadband (400–700 nm) incident 
irradiance (E m-2 d-1) at the seabed, 
averaged over a whole year. 
Estimated by combining incident 
irradiance at the sea surface (Frouin 
et al., 2012) ; this table), diffuse 
downwelling irradiance attenuation 
(KPAR; this table) and bathymetric 
depth at monthly resolution. 
Derived from blended coastal (QAA) 
and open-ocean attenuation 
products. 

E m-2 d-1 
 

 

Kpar Diffuse 
downwelling 
attenuation 

Mean 
monthly 

vertical attenuation of diffuse, 
downwelling broadband irradiance 
(Photosynthetically Available 
Radiation, PAR, 400–700 nm). 
Merged coastal and open-ocean 
product based on MODIS-Aqua data. 
Coastal: estimated from inherent 
optical properties (QAA). Ocean: 

 m-1 
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estimated from K490 using (Morel et 
al., 2007). 

PAR Photo-
synthetically 
active 
radiation 

Mean 
monthly 

Daily-integrated, broadband, 
incident irradiance at the sea-
surface based on day length, solar 
elevation and measurements of 
cloud cover from ocean colour 
satellites (Frouin et al., 2012). 

Einsteins m-2 
d-1 
 

 

SeasTDiff 

Annual 
amplitude of 
sea floor 
temperature 

Static Smoothed difference in seafloor 
temperature between the three 
warmest and coldest months. 
Providing a measure of temperature 
amplitude through the year. 

°C km-1 
 

 

Sed.class 
Sediment 
classification 

Static 

Classification of Mud, Sand and 
Gravel layers (this table) using the 
well-established (Folk et al., 1970) 
classification. Subtidal rocky reefs 
(this table) were incorporated. This 
classification provides a broad 
measure of hardness Mud – Rock.  

NA;  
Mud;  
Muddy gravel; 
Muddy sandy 
gravel;  
sand;  
Gravely mud; 
Gravelly sandy 
mud; 
Gravelly sand; 
Gravel; 
Rock 

 

SstGrad 
Sea surface 
temperature 
gradient 

Mean 
monthly 

Smoothed magnitude of the spatial 
gradient of annual mean SST. This 
indicates locations in which frontal 
mixing of different water bodies is 
occurring (Leathwick et al., 
2006).Derived from SST described 
above at two resolutions and 
merged. 

 °C km-1 

 

SuspPM 
Suspended 
particulate 
matter 

Mean 
monthly 

Indicative of total suspended 
particulate matter concentration. 
Based on SeaWiFS ocean colour 
remote sensing data (Pinkerton et 
al., 2005); modified Case 2 
atmospheric correction; modified 
Case 2 inherent optical property 
algorithm  

Indicative of 
total 
suspended 
particulate 
matter 
concentration 
(g m-3) 

 

TC 
Tidal Current 
speed 

Static Maximum depth-averaged (NZ 
bathymetry) flows from tidal 
currents calculated from a tidal 
model for New Zealand waters 
(Walters et al., 2001). Tidal 
constituents (magnitude A and 
phase phi, represented as real and 
imaginary parts X + iY = 
A*exp(i*phi)) for sea surface height 
and currents (8 components) were 
taken from the EEZ tidal model, on 
an unstructured mesh at variable 
spatial resolution. The complex 

ms-1  
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components were bilinearly 
interpolated to the output grid. 

TempRes Temperature 
residuals 

Static Residuals from a GLM relating 
temperature to depth using natural 
splines – this highlights areas where 
average temperature is higher or 
lower than would be expected for 
any given depth 

°C  

VGPM Net primary 
production by 
the vertically-
generalised 
production 
model 

Mean 
monthly 

Daily production of organic matter 
by the growth of phytoplankton in 
the surface mixed layer, net of 
phytoplankton respiration. 
Estimated at monthly resolution 
based on satellite observations of 
chl-a, PAR and SST, and model-
derived estimates of mixed-layer 
depth, using the vertically-
generalised production model  
(Behrenfeld and Falkowski, 1997). 

mgC m-2 d-1  

Oithona Oithona similis Static Cyclopoid copepods, dominated by 
Oithona similis (97%). The remaining 
3% is unidentified (Pinkerton et al., 
2020). 

Counts per 5 
nautical mile 
Continuous 
Plankton 
Recorder 
(CPR) 
segment 

 

Euphausiidae Euphausiidae Static All adult and developmental stages 
of krill (generally not identified to 
species or genus). Most abundant 
identified species was Thysanoessa 
macrura (64%) (Pinkerton et al., 
2020).  

Counts per 5 
nautical mile 
Continuous 
Plankton 
Recorder 
(CPR) 
segment 

 

Foraminifera Foraminifera Static Unidentified (97.8%) Foraminifera 
specimens (Pinkerton et al., 2020). 

Counts per 5 
nautical mile 
Continuous 
Plankton 
Recorder 
(CPR) 
segment 

 

Fritillaria spp. Fritillaria spp. Static Solitary, free-swimming larvacean, 
unidentified beyond genus 
(Pinkerton et al., 2020). 

Counts per 5 
nautical mile 
Continuous 
Plankton 
Recorder 
(CPR) 
segment 

 

Pteropods Pteropods Static Pelagic gastropods, predominately 
Limacina spp. (98.9%) (Pinkerton et 
al., 2020). 

Counts per 5 
nautical mile 
Continuous 
Plankton 
Recorder 
(CPR) 
segment 
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Zooplankton Zooplankton Static Total abundance of all zooplankton 
types, including Oithona similis, 
Copepoda, Amphipoda, 
Chaetognatha, Euphausiidae, 
Foraminifera, Fritillaria spp., 
Oikopleura spp., Ostracoda, 
Pteropods, and “Other” (remaining 
identified organisms such as 
cephalopods and fish eggs 
comprising <1% of samples)  
(Pinkerton et al., 2020). 

Counts per 5 
nautical mile 
Continuous 
Plankton 
Recorder 
(CPR) 
segment 
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Appendix B Environmental predictor variables 

  

Figure 1: Bathymetry (Bathy) within the New Zealand Exclusive Economic Zone (EEZ). 
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Figure 2: BPI broad (BPI broad) within the New Zealand Exclusive Economic Zone (EEZ). 
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Figure 3: Annual mean chlorophyll-a concentration (Chl-a) within the New Zealand Exclusive Economic 
Zone (EEZ). 
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Figure 4: Annual mean mixed layer depth (MLD) within the New Zealand Exclusive Economic Zone (EEZ). 
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Figure 5: Slope (Slope) within the New Zealand Exclusive Economic Zone (EEZ). 
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Figure 6: Annual mean sea surface temperature (SST) within the New Zealand Exclusive Economic Zone 
(EEZ). 
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Figure 7: Annual mean turbidity within the New Zealand Exclusive Economic Zone (EEZ). 
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Figure 8: Annual mean downward vertical flux of particulate (POCFlux) within the New Zealand Exclusive 
Economic Zone (EEZ). 
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Figure 9: Modelled average copepod (subclass Copepoda) density, averaged for three times of day, six 
months (October to March) and years 1998–2018 from Pinkerton et al. (2020), reprojected for the New Zealand 
Exclusive Economic Zone (EEZ). Areas shown white either have no data, or no predictions were made, including 
because environmental conditions were outside the training data.  
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Appendix C Partial dependence plots 

 
Figure 10: Partial dependence plots of the mean boosted regression tree (BRT) models for the nine variables, showing the influence of each predictor variable on 
the response. Variables are ordered by influence as indicated in top left hand of plots. Shaded area represents 95% confidence interval.  
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Figure 11: Partial dependence plots of the mean random forest (RF) models for the nine variables, showing the influence of each predictor variable on the 
response. Variables are ordered by influence as indicated in top left hand of plots. Shaded area represents 95% confidence interval.  
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