Electronic monitoring of protected species interactions with commercial fisheries

CSP Project MIT2017-02

Johanna Pierre

Introduction

- Fisheries monitoring provides essential information for management
- Human observers the mainstay of monitoring in NZ since the 1990s
 - E-tools: e.g. VMS
- Observer monitoring has challenges:
 - representativeness, the "observer effect", safety at sea
 - inshore monitoring especially difficult: space onboard, dynamic fishing schedules, etc.
 - cost: people get more expensive
- Electronic monitoring (EM):
 - is a proven monitoring solution, including for protected species
 - not a silver bullet
 - around > 15 years
 - cost: technology gets cheaper

Objectives

This project reviewed:

- types of interactions between commercial fishing and threatened, endangered and protected species that are detectable using EM
- reviewer training given to detect and characterise those interactions using EM imagery
- progress towards automation of EM imagery review

http://www.afma.gov.au/stay-in-view-this-march/electronic-monitoring-cameras/

- Online keyword-based searches for publications, reports, conference literature, working group documents, websites
- Targeted searches where resources known to exist
 - Websites, conference proceedings
 - ACAP, RFMO, fisheries management sites
 - Social media hashtags (e.g. #EM4Fish)
 - Scientific Forum for Fish and Fisheries

Direct expert consultation

Seabirds

- Captures
 Pelagic and demersal longline, set net/gill net, purse seine, trawl
- Trawl warp/third wire
- Locations
 Australia, Hawaii, NZ, Peru, Solomon Is, NE and NW USA
- ID to species

 e.g. black-footed, Laysan and short-tailed albatross, black, giant and Cape petrel, flesh-footed and greater shearwater, gannet, Humboldt penguin, northern fulmar
- ID to higher taxonomic group e.g. gulls, shearwater, albatross

http://www.seychellesnewsagency.com/articles/5768/Seychelles+takes+the+lead+with+electronic+monitori+system+on+fishing+vessels

Cetaceans

- Captures
 Set net/gill net, trawl
- Locations
 Australia, NZ, NE USA, North Sea, Peru
- ID to species

 e.g. harbour porpoise, bottlenose,
 common, dusky and Hector's dolphins
- ID to higher taxonomic group e.g. dolphin

McElderry et al. 2011

- Pinnipeds
 - Captures
 Gill net
 - Locations
 Australia, NE USA, Peru
 - ID to species
 e.g. Australian and South American sea
 lions, gray and harbour seal

http://59in59.com/the-blog/2016/5/9/glacier-bay-types-of-commercial-fishing

- Marine reptiles
 - Captures
 Pelagic longline, gill net, trawl
 - Locations
 Australia, NZ, Hawaii, Solomon Is,
 Peru
 - ID to species
 e.g. green, hawksbill, leatherback,
 loggerhead and olive ridley turtles
 - ID to higher taxonomic group e.g. turtle, sea snake

McElderry et al. 2010

Fish

- EM widely used to document fish catch
 - Catch accounting, discarding, verification of fisher reports
- Shark and ray captures
 Pelagic longline, set net/gill net, purse seine, trawl, pot/trap
- Locations
 Australia, NZ, Hawaii, Solomon Is,
 Peru
- ID to species

 e.g. white pointer, silky, and oceanic
 whitetip sharks, devil and manta rays
- ID to higher taxonomic group e.g. Mobula spp.

Piasante et al. 201

Corals

- Black, Gorgonian and hydrocorals from a longline fishery, South Georgia
- "Benthos" detection, trawl fishery in Australia
- Sponges and snails, trawl fishery northeastern USA

Benedet 2016

Results: Life status

Piasante et al. 2012 McElderry et al. 2010

Results: Bycatch risk factors

- Mitigation
 - Tori lines
 - Warp scarers
 - Turtle excluder devices
 - Bycatch reduction devices
 - Pingers

Results: Bycatch risk factors

- Fish waste discharge
- Abundance counts

Protected species handling

Pria et al. 2014

AcElderry et al. 201

Feedback from reviewers to vessels

- No standard approach, training details seldom reported
- Where training is reported, components included:
 - Species identification from imagery
 - Self-testing
 - Tutorial-style feedback on self-assessment
 - Practice runs with imagery
 - Formal testing to assess capability
- EM reviewers may be naïve or experienced in identifying catch
 - Both can be trained to perform similarly well
 - If reviewers are/were observers, training needs to focus on working from imagery

Results: Species ID

EM reviewers:

- may be trained current or ex-observers
- do not observe at sea, but can receive observer training
- work from a species list or image library
- are provided with field guides
- are given bespoke ID tools for EM work

Results: Rationale for ID

- Body size
- Morphology
- Distinctive markings
- Colouration
- No standard for documenting ID
- 2 identifying characteristics

https://www.stuff.co.nz/environment/100625479/fishing-for-the-truth-about-penguins-and-dolphins-snared-in-nets

Massachusetts Energy and Environmental Affairs,

https://mote.org/research/program/fisheries-ecology-and-enhancement/electronic-monitoring-project

Results: Quality assurance

- Importance widely acknowledged
- No standard approach
- Repeatability of analysis valuable
- Same imagery stream reviewed by multiple reviewers
 - e.g. 10%, then findings compared
- Refresher training vital

http://www.seychellesnewsagency.com/articles/5768/Seychelles+takes+the+lead+with+electronic+monitoring+system+on+fishing+vessels

Results: Automated review

Results: Automated review

- Growing body of work on machine learning
- Not yet operationalised or deployed at scale
- Mostly focused on fish (ID, length)
- Training algorithms a key component
- Work underway on machine learning for seabird bycatch events and identification
- Will change the role of humans in analysing EM imagery
- Near future of EM review is still humancentric

Hwang et al. 2017

Conclusions

- types of interactions between commercial fishing and threatened, endangered and protected species that are detectable using EM
 - Captures of seabirds, marine mammals, reptiles, fish
 - Pelagic and demersal longline
 - Trawl
 - Purse seine
 - Set net
 - Pot/trap (fish)
 - Life status
 - Seabird interactions with trawl warp / third wire
 - Coral bycatch

Conclusions

- risk factors for interactions
 - Mitigation measures
 - Fish waste discharge
 - Abundance
 - Handling
- progress towards automation of EM imagery review
 - Yes but for now it's still human-centric

Bartholomewet al 2018

Conclusions

 reviewer training given to detect and characterise those interactions using EM imagery

 reviewer training given to detect and characterise those interactions using EM imagery

WHAT?

- Detection of protected species
 - Captures, dropouts, mode of capture
- Identification
 - Characteristics documented
- Life status
- Mitigation
 - Present/absent
- Unusual crew behaviour
 - May indicate captures
- Training from real imagery as much as possible

Acknowledgements

- A. Barney, M. Carnes, T. Emery, A. Fedoruk, S. Fitzgerald, M. Gerner,
 L. Z. Hale, J. Isaac-Lowry, S. Kennelly, G. L. Marcos, H. McElderry,
 C. McGuire, K. Kauer, M.J. Pria, C. Rodley, E. Torgerson, F. Wallace,
 C. Wilson, M. Zimring
- EM community
- CSP team

