Estimation of sea lion demographic parameters methodological update (POP2007/01 Obj 3)

Darryl MacKenzie

Overview

- Demographic parameters to be estimated
 - Pup production.
 - Total population size.
 - Survival.
 - Reproduction.
 - Recruitment to breeding population.

Pup Production

- Currently a mix of mark-recapture and direct counts.
- These require some assumptions that may potentially introduce some bias if violated, however level of effort would suggest any bias is likely negligible.
- Recommend current methods are continued.

Pup Production

 Alternatively, given an estimation of the adult female breeding population (N) and there pupping rate (p), and estimate of the number of pups produced would be:

$$P = N \times p$$

 May be a useful double-check, although estimating population size may be problematic.

Total Population Size

- Currently done using an approach developed by Gales and Fletcher (1999).
- · Based on
 - Pup production estimates
 - Assumed population structure
 - Stable age distribution
 - Estimates of demographic parameters not specific to NZ sea lions

Total Population Size

- Proposed to assess robustness of population size estimates to:
 - Assumed population structure
 - Estimates of demographic parameters not specific to NZ sea lions

Total Population Size

- Because of stable age distribution assumption, population size estimates are effectively rescaled pup production estimates.
 - i.e., the reported mean population size estimates for each year from Chilvers (2007) is approximately 4.75 x number of pups.

Total Population Size

- General approach is not likely to be useful for tracking trajectory of total population size.
- Changes in pup numbers may not reflect a change in adult breeding population size.

Total Population Size

- There is some information in the daily resight records that could be used to estimate population size.
- Likely only feasible for specific tagging cohorts and beaches.
 - May be difficult to obtain a total population size (to be assessed once data analysis begins).

Pollock's Robust Design

 Exploits the additional information that is contained within the daily resights, rather than pooling to seen/not seen each year.

	1	2	3
Daily	011011100	000000000	100100001
Pooled	1	0	1

Pollock's Robust Design

- Allows estimation of additional parameters.
 - Relax assumptions required when using only the pooled data.
 - Account for the within season biology and sampling processes more closely.
- Can be extended to multiple-states
 - e.g., reproductive status or number of tags.

Survival, Reproduction and Recruitment

 PRD extended to multiple states offers the ability to estimate all 3 demographic parameters while allowing for issues such as tag loss, and misidentification of breeders.

Survival, Reproduction and Recruitment

•	For example:	State	Description
		1	Breeder, ≥1 tag
		2	Breeder, ≥1 tag Breeder, 0 tags
		3	Non-breeder, ≥1 tag
		4	Non-breeder, 0 tags
		5	Dead

- Transitions from states 1,3→2,4 tell us about tag loss.
- Transitions from states 1,2→3,4 tell us about reproduction.
- Transitions from states 1,2,3,4→5 tell us about mortality.

Survival, Reproduction and Recruitment

- Within season, daily surveys could provide information about breeder misclassification.
 - Need to assume misclassification is only in one direction.
- Can allow resight probabilities to vary by state.
- Data collected under PRD also allows further relaxing of assumptions.
 - e.g., animals that arrive late/leave early

Survival, Reproduction and Recruitment

 Can build in functional relationships between demographic parameters and age (for known age animals).

Survival, Reproduction and Recruitment

- Similarly, will consider models where reproduction is a function of age.
- Define recruitment as the first successful breeding attempt.
- Different functions for first reproduction (recruitment) and subsequent reproduction.

Survival, Reproduction and Recruitment

- General methods proposed here are well established within the mark-recapture community.
- I don't expect annual estimates of all parameters to be estimable, but will start with a general model then simplify, searching for a parsimonious model based upon Akaike's Information Criterion.

Summary

- Pup production continue current methods and investigate feasibility of a second measure.
- Total population size concerns about reliability of current method. Data may not exist to obtain a total population size estimate using other methods.

Summary

 Survival, reproduction and recruitment – tag-resight data appears to be a rich source of information that has not been fully utilised. Multi-state mark-recapture methods provide a well established statistical framework for analysing this data.