Estimation of Demographic Parameters for New Zealand Sea Lions Breeding on the Auckland Islands

POP2007/01 Obj 3

Darryl MacKenzie

- 2 key demographic processes
- Can be estimated from tag-resight data using mark-recapture methods
- Important to account for tag-loss
 - Artificially inflates mortality rates
- Sightability may be different for breeders/non-breeders, branded animals, number of flipper tags

- 4 components to model tag-resight data
 - Number of flipper tags each year
 - Survival from one year to next
 - Whether female breeds in a year
 - Number of sightings in a year

 Number of flipper tags in year t is multinomial random variable with 1 draw and category probabilities (π's) that depends on number of tags in previous year

Number of tags in year t

Number of tags in year *t*-1

	0	1	2
0	1	0	0
1	1- π _{1,1}	$\Pi_{1,1}$	0
2	1- π _{1,2} - π _{2,2}	π _{1,2}	$\pi_{2,2}$

 Analyses conducted with and without accounting for tag-loss to assess it's effect on estimation of demographic parameters

 Given female is alive, it's age and breeding status in year t-1, whether it is alive in year t is a Bernoulli random variable where probability of success (survival) is S_{age,bred}

 Given female is alive in year t, it's age and breeding status in year t-1, whether it breeds in year t is a Bernoulli random variable where probability of success (breeding) is B_{age,bred}

- 3 relationships considered between age and survival/reproduction
 - 1. Constant
 - 2. Age groups: 0-3, 4-14, 15+
 - 3. Logistic-quadratic

 Given female is alive, it's breeding status, presence of a brand, PIT tag and number of tags in year t, the number of times it's sighted during a field season is a binomial random variable with a daily resight probability p_{t,bred,brand,tags}

- Branded animals have the same resight probability regardless of number of flipper tags.
- Animals with no flipper tags can only be resighted if they are chipped or branded.
- PIT tags have no effect on the resight probability if the unbranded animal has 1 or more flipper tags.
- There is a consistent odds ratio (δ) between resighting animals with 1 and 2 flipper tags.
- Resight probabilities are different for breeding and nonbreeding animals.
- Resight probabilities vary annually.

- $p_{t,bred,brand}$ applies to all females with brand
- p_{t,bred,chip} applies to unbranded females
 with no flipper tags
- $p_{t,bred,T1}$ applies to unbranded females with one flipper tags
- $p_{t,bred,T2}$ applies to unbranded females with two flipper tags

- Posterior distributions for parameters can be approximated with WinBUGS by defining a model in terms of the 4 random variables
- Some outcomes are actually latent (unknown) random variables, but their 'true' value can be imputed by MCMC
- Equivalent to a multi-state mark-recapture model

- 2 chains of 25,000 iterations
- First 5,000 iterations discarded as burn-in
- Prior distributions:
 - Most probabilities ~ U(0,1)
 - π_{X,2} ~ Dirichlet(1,1,1)
 - $ln(\delta) \sim N(0, 10^2)$
 - Logistic coefficients ~ N(0,4.47²)
- Chains demonstrated convergence and good mixing

Survival and Reproduction: Data

- 1990-2003 tagging cohorts
- Resights from 1998-2008 in main field season at Enderby Island
- 2 definitions considered for breeder according to assigned status in database
 - Confirmed breeders (status = 3)
 - Probable breeders (status = 3 or 15)

Survival and Reproduction: Data

 Retagged females dealt with using the Lazarus approach

Almost 1700 tagged females included in analysis

Daily sighting probabilities - branded

Daily sighting probabilities – PIT tag, 0 flipper tags

Daily sighting probabilities – 1 flipper tag

Daily sighting probabilities – 2 flipper tags

- Constant age effect survival
 - Non-breeders

- Constant age effect survival
 - Breeders

- Constant age effect reproduction
 - Non-breeders

- Constant age effect reproduction
 - Breeders

Constant age model

Number of Tags in Year t-1

Survival

Defn.	Status	Mean	SD	2.5%ile	Median	97.5%ile
Confirmed	Non-breeders	0.756	0.007	0.742	0.756	0.770
	Breeders	0.921	0.010	0.900	0.921	0.941
Probable	Non-breeders	0.755	0.007	0.741	0.755	0.769
	Breeders	0.912	0.010	0.891	0.912	0.932

Reproduction

Defn.	Status	Mean	SD	2.5%ile	Median	97.5%ile
Confirmed	Non-breeders	0.130	0.006	0.117	0.130	0.143
	Breeders	0.655	0.017	0.622	0.655	0.687
Probable	Non-breeders	0.142	0.007	0.129	0.142	0.155
	Breeders	0.682	0.015	0.652	0.682	0.713

- Age groups survival
 - Non-breeders, with tag loss

Age Group	Mean	SD	2.5%ile	Median	97.5%ile
0-3	0.697	0.009	0.678	0.697	0.716
4-14	0.874	0.010	0.854	0.875	0.894
15+	0.719	0.062	0.591	0.720	0.835

- Age groups survival
 - Non-breeders, without tag loss

Age Group	Mean	SD	2.5%ile	Median	97.5%ile
0-3	0.686	0.009	0.668	0.686	0.703
4-14	0.839	0.009	0.820	0.839	0.857
15+	0.691	0.057	0.575	0.693	0.797

- Age groups survival
 - Breeders, with tag loss

Age Group	Mean	SD	2.5%ile	Median	97.5%ile
0-3	-	-	-	-	-
4-14	0.929	0.010	0.908	0.929	0.948
15+	0.682	0.081	0.515	0.685	0.832

- Age groups survival
 - Breeders, without tag loss

Age Group

Age Group	Mean	SD	2.5%ile	Median	97.5%ile
0-3	-	-	-	-	-
4-14	0.890	0.011	0.868	0.891	0.911
15+	0.640	0.079	0.479	0.643	0.787

- Age groups reproduction
 - Non-breeders, with tag loss

Age Group	Mean	SD	2.5%ile	Median	97.5%ile
0-3	0.010	0.002	0.006	0.010	0.015
4-14	0.316	0.015	0.289	0.316	0.346
15+	0.285	0.069	0.162	0.281	0.431

- Age groups reproduction
 - Non-breeders, without tag loss

Age Group					
0-3	0.009	0.002	0.005	0.009	0.014
4-14	0.274	0.012	0.251	0.274	0.300
15+	0.259	0.063	0.146	0.256	0.392

- Age groups reproduction
 - Breeders, with tag loss

Age Group	Mean	SD	2.5%ile	Median	97.5%ile
0-3	-	-	-	-	-
4-14	0.647	0.017	0.613	0.647	0.679
15+	0.714	0.091	0.521	0.719	0.874

- Age groups reproduction
 - Breeders, without tag loss

Age Group	Mean	SD	2.5%ile	Median	97.5%ile
0-3	-	-	-	-	-
4-14	0.643	0.017	0.609	0.643	0.676
15+	0.749	0.087	0.562	0.756	0.898

2.5%ile

0.069

0.895

0.064

0.147

0.733

Median

0.087

0.913

0.081

0.164

0.755

97.5%ile

0.105

0.931

0.098

0.183

0.776

Age groups

Survival

Defn.	Status	Age Group	Mean	SD	2.5%ile	Median	97.5%ile
Confirmed	Non-breeders	0-3	0.697	0.009	0.678	0.697	0.716
		4-14	0.874	0.010	0.854	0.875	0.894
		15+	0.719	0.062	0.591	0.720	0.835
	Breeders	0-3	-	-	-	-	-
		4-14	0.929	0.010	0.908	0.929	0.948
		15+	0.682	0.081	0.515	0.685	0.832
Probable	Non-breeders	0-3	0.700	0.009	0.682	0.700	0.719
		4-14	0.873	0.010	0.852	0.873	0.893
		15+	0.720	0.066	0.585	0.722	0.842
	Breeders	0-3	-	-	-	-	-
		4-14	0.919	0.011	0.898	0.919	0.939
		15+	0.673	0.077	0.516	0.676	0.817

Reproduction

Defn.	Status	Age Group	Mean	SD	2.5%ile	Median	97.5%ile
Confirmed	Non-breeders	0-3	0.010	0.002	0.006	0.010	0.015
		4-14	0.316	0.015	0.289	0.316	0.346
		15+	0.285	0.069	0.162	0.281	0.431
	Breeders	0-3	-	-	-	-	-
		4-14	0.647	0.017	0.613	0.647	0.679
		15+	0.714	0.091	0.521	0.719	0.874
Probable	Non-breeders	0-3	0.010	0.002	0.006	0.009	0.015
		4-14	0.353	0.015	0.323	0.353	0.383
		15+	0.329	0.074	0.193	0.326	0.482
	Breeders	0-3	-	-	-	-	-
		4-14	0.678	0.016	0.646	0.678	0.708
		15+	0.649	0.090	0.465	0.652	0.813

- Logistic-quadratic survival
 - Non-breeders, with tag loss

- Logistic-quadratic survival
 - Non-breeders, without tag loss

- Logistic-quadratic survival
 - Breeders, with tag loss

- Logistic-quadratic survival
 - Breeders, without tag loss

Age

2.5%ile

-0.358

0.273

-0.081

Median

-0.183

0.311

-0.071

97.5%ile

-0.008

0.351

-0.061

- Logistic-quadratic reproduction
 - Non-breeders, with tag loss

Mean

-0.637

0.281

-0.061

0.080

0.019

0.005

2.5%ile

-0.793

0.245

-0.070

Median

-0.637

0.281

-0.061

97.5%ile

-0.482

0.319

-0.052

- Logistic-quadratic reproduction
 - Non-breeders, without tag loss

- Logistic-quadratic reproduction
 - Breeders, with tag loss

- Logistic-quadratic reproduction
 - Breeders, without tag loss

97.5%ile

0.150

0.891

0.085

0.185

0.785

Logistic-quadratic

Survival

Defn.	Status	Term	Mean	SD	2.5%ile	Median	97.5%ile
Confirmed	Non-breeders	Intercept	4.533	0.344	3.920	4.516	5.290
		Age	0.130	0.019	0.095	0.130	0.169
		Age ²	-0.077	0.006	-0.090	-0.076	-0.065
	Breeders	Intercept	2.954	0.248	2.529	2.934	3.503
		Age	0.153	0.103	-0.057	0.156	0.347
		Age^2	-0.046	0.014	-0.073	-0.046	-0.019
Probable	Non-breeders	Intercept	3.825	0.229	3.406	3.814	4.305
		Age	0.105	0.016	0.075	0.105	0.136
		Age ²	-0.064	0.005	-0.073	-0.064	-0.055
	Breeders	Intercept	2.658	0.189	2.306	2.651	3.049
		Age	0.133	0.088	-0.044	0.135	0.300
		Age^2	-0.040	0.012	-0.063	-0.040	-0.016

Reproduction

Defn.	Status	Term	Mean	SD	2.5%ile	Median	97.5%ile
Confirmed	Non-breeders	Intercept	-0.183	0.089	-0.358	-0.183	-0.008
		Age	0.311	0.020	0.273	0.311	0.351
		Age ²	-0.071	0.005	-0.081	-0.071	-0.061
	Breeders	Intercept	0.705	0.097	0.516	0.704	0.899
		Age	0.020	0.053	-0.083	0.020	0.125
		Age^2	-0.006	0.009	-0.024	-0.006	0.011
Probable	Non-breeders	Intercept	-0.055	0.100	-0.249	-0.057	0.144
		Age	0.340	0.021	0.299	0.339	0.381
		Age ²	-0.072	0.005	-0.082	-0.072	-0.062
	Breeders	Intercept	0.767	0.094	0.582	0.767	0.956
		Age	0.066	0.052	-0.036	0.066	0.168
		Age^2	-0.014	0.008	-0.030	-0.014	0.003

- Gales-Fletcher approach
 - OK to give ball-park estimates of total population
 - Unlikely to give reliable annual estimates
 - Decided to not proceed with reassessment of method

 Traditional mark-recapture methods cannot be applied to tag-resight data

 As part of previous analysis, whether an animal is alive each year is predicted as part of the estimation

• Number of females still alive each year from specific cohorts can be readily obtained: $\hat{n}_{cohort,t}$

Number of female sea lions estimated to be alive that were first released in year 1 (1998) on Enderby Island

• Given the fraction of pups produced in a cohort year that were tagged (r_{cohort}) , then:

$$\hat{N}_{cohort,t} = \frac{\hat{n}_{cohort,t}}{r_{cohort}}$$

$$\hat{N}_{t} = \sum_{cohort} \hat{N}_{cohort,t}$$

Number of female sea lions estimated to be alive that where first released between years 1 and 6 (1998-2003) from Enderby Island

- Tag loss has minimal effect on reproduction estimates, but significant effect on survival
- Using biased estimates of demographic parameters in population models will underestimate population growth rate
- Tag loss should be accounted for in all subsequent analyses

 Flipper tags are not lost independently.
 Only possible to identify this through branded/chipped animals

- Assumed no PIT tag loss
 - Unlikely in practice
 - Current estimates may still be biased low

- More liberal definition of 'breeders' has little effect on survival estimate, but increases reproduction significantly
 - Debatable which definition might be more accurate
- Still plan to assess alternative approach based upon the chance of seeing the required evidence of reproduction with each resighting

- Difficult to formally compare models using Bayesian inference
 - Suggest the age groups model as comprise between realism and simplicity

 Population size estimates should be a key demographic parameter to fisheries/sea lion management

 Suggested approach makes use of current data, not ideal in some respects

 Additional data would need to be collected for alternative approaches